
katgpucbf
Release 0.1.dev290+gf385556

SARAO DSP team

May 13, 2024

CONTENTS:

1 Introduction 1
1.1 MeerKAT and MeerKAT Extension . 1
1.2 Radio Astronomy Correlators . 1
1.3 This module . 1
1.4 Controller . 2

2 Mathematical background 3
2.1 Frequencies . 3
2.2 Complex voltages . 3
2.3 Polyphase filter bank . 3
2.4 Correlation products . 4
2.5 Narrowband . 4
2.6 Delay and phase compensation . 4

3 Changelog 5

4 System requirements 7
4.1 Networking . 7
4.2 BIOS settings . 7

5 Installation 9
5.1 Installation with Docker . 9
5.2 Installation with pip . 9

6 Operation 11
6.1 katsdpcontroller . 11
6.2 Starting the correlator . 12
6.3 Controlling the correlator . 14
6.4 Shutting down the correlator . 15

7 Monitoring 17
7.1 katcp sensors . 17
7.2 Prometheus metrics . 18
7.3 Event monitoring . 18

8 Data Interfaces 19
8.1 SPEAD Protocol . 19
8.2 Packet Format . 19
8.3 F-Engine Data Format . 20
8.4 X-Engine Data Format . 21

i

9 DSP Engine Design 23
9.1 Terminology . 23
9.2 Glossary . 23
9.3 Operation . 24
9.4 Common features . 26

10 F-Engine Design 27
10.1 Network receive . 27
10.2 GPU Processing . 27
10.3 Network transmit . 34
10.4 Missing data handling . 35
10.5 Narrowband . 35

11 XB-engine design 39
11.1 Correlation . 39
11.2 Beamforming . 44

12 Development Environment 47
12.1 Setting up a development environment . 47
12.2 Pre-commit . 48
12.3 Light-weight installation . 48
12.4 Boiler-plate files . 48
12.5 Preparing to raise a Pull Request . 49

13 Unit Testing 51

14 Digitiser Packet Simulator 53
14.1 Usage . 53
14.2 Signal specification . 53
14.3 Design . 55

15 F-Engine Packet Simulator 57

16 Qualification framework 59
16.1 Requirements . 59
16.2 Configuration . 59
16.3 Running . 60
16.4 Post-processing . 60

17 Updating autotuning database 61

18 Benchmarking 63
18.1 Multicast groups . 64
18.2 Algorithm . 64

19 TODOs 67

20 katgpucbf package 69
20.1 Subpackages . 69
20.2 Submodules . 105
20.3 Module contents . 115

Bibliography 117

Python Module Index 119

ii

Index 121

iii

iv

CHAPTER

ONE

INTRODUCTION

1.1 MeerKAT and MeerKAT Extension

The South African Radio Astronomy Observatory (SARAO) manages all radio astronomy initiatives and facilities in
South Africa, including the MeerKAT radio telescope. MeerKAT is a precursor to the Square Kilometre Array (SKA)
and consists of 64 offset-Gregorian antennas in the Karoo desert in South Africa.

MeerKAT Extension is a project currently underway to extend MeerKAT with additional antennas and longer baselines.
This module (katgpucbf) is intended for deployment with MeerKAT Extension.

1.2 Radio Astronomy Correlators

Radio astronomy interferometry is a means of achieving higher sensitivity and resolution in radio telescopes by com-
bining signals from multiple antennas, as opposed to relying on ever-larger individual antennas which are expensive
and unwieldy.

This combination of signals is typically achieved digitally by equipment known as a correlator. In the narrowband case,
correlation is achieved by cross- multiplying each antenna’s signal with each other antenna’s signal. Since modern radio
telescopes have wideband receivers, the signal is decomposed (typically using the Fourier transform) into multiple
narrowband frequency channels.

Mathematically, correlation and frequency decomposition can be done in any order. A correlator which calculates
cross-correlations first and then frequency decomposition is referred to as X-F, while vice-versa is known as F-X. For
practical reasons (both in terms of compute and interconnect), F-X correlators are more cost-effective to implement,
and so MeerKAT and MeerKAT Extension make use of this architecture for their correlators.

MeerKAT and MeerKAT Extension’s correlators were developed with the influence of CASPER. Costs are min-
imised by using commercially-available products wherever possible. In particular, Ethernet is used to connect signal-
processing nodes. This eliminates the need to design costly custom backplanes.

1.3 This module

This module (katgpucbf) provides a software implementation of the DSP engines of a radio astronomy correlator
described above.

The module contains several executable entry-points. The main functionality is implemented in fgpu and xbgpu
which execute (respectively) an F- or an XB-engine. The F-engine implements the channelisation component of the
correlator’s operation, while the XB-engine calculates the correlation products (X) and beamformer output (B). The
beamformer component is not currently implemented, but is planned for a future release.

1

https://www.sarao.ac.za/about/sarao/
https://www.sarao.ac.za/science/meerkat/about-meerkat/
https://www.skao.int/en/about-us/skao
https://casper.berkeley.edu/

katgpucbf, Release 0.1.dev290+gf385556

Additionally, packet simulators are provided for testing purposes. A Digitiser Packet Simulator can be used to test
either an F-engine or an entire correlator. An F-Engine Packet Simulator can be used to test an XB-engine in isolation.

The module also includes unit tests (test/), as well as a framework for automated testing of an entire correlator against
the set of requirements applicable to the MeerKAT Extension CBF (qualification/).

As far as possible, the code in this package is not MeerKAT-specific. It could in theory be used at other facilities, pro-
vided that compatible input and output formats are used (including number of input and output bits). The katgpucbf.
meerkat module contains some tables that are specific to MeerKAT and MeerKAT Extension, which are used by some
convenience scripts, but which are not used by the core programs.

Some additional scripts (scratch/) which the developers have found to be useful are included, but user discretion is
advised as these aren’t subject to very much quality control, and will need to be adapted to your environment.

1.4 Controller

Todo: NGC-680 - Relationship with katsdpcontroller - reference to a later section which will describe it more thor-
oughly.

2 Chapter 1. Introduction

CHAPTER

TWO

MATHEMATICAL BACKGROUND

This section is not intended as a tutorial for radio astronomy. It briefly summarises some key equations, with the intent
of illustrating implementation choices made by this package.

2.1 Frequencies

This package works only in positive baseband frequencies, and is unaware of heterodyne systems. Where necessary, the
signal will need to be mixed to this range before being provided as input. As an example, MeerKAT L-band digitisers
receive signal in the range 856–1712 MHz, but mix it down to 0–856 MHz by negating every second sample (the digital
equivalent of a 856 MHz mixing signal).

This has implications for delay compensation.

2.2 Complex voltages

A wave with frequency 𝑓 and wave number 𝑘 is considered to have a phasor of

𝑒(2𝜋𝑓𝑡−𝑘𝑧)𝑗

where 𝑡 is time and 𝑧 is position. In particular, phase measured at a fixed position (an antenna) increases with time.

2.3 Polyphase filter bank

A finite impulse response (FIR) filter is applied to the signal to condition the frequency-domain response. The filter is
the product of a Hann window (to reduce spectral leakage) and a sinc (to broaden the peak to cover the frequency bin).
Specifically, if there are 𝑛 output channels and 𝑡 taps in the polyphase filter bank, then the filter has length 𝑤 = 2𝑛𝑡,
with coefficients

𝑥𝑖 = 𝐴 sin2
(︂

𝜋𝑖

𝑤 − 1

)︂
sinc

(︂
𝑤𝑐 ·

𝑖+ 1
2 − 𝑛𝑡

2𝑛

)︂
,

where 𝑖 runs from 0 to 𝑤− 1. Here 𝐴 is a normalisation factor which is chosen such that
∑︀

𝑖 𝑥
2
𝑖 = 1. This ensures that

given white Gaussian noise as input, the expected output power in a channel is the same as the expected input power in
a digitised sample. Note that the input and output are treated as integers rather than as fixed-point values.

The tuning parameter 𝑤𝑐 (specified by the --w-cutoff command-line option) scales the width of the response in the
frequency domain. The default value is 1, which makes the width of the response (at -6dB) approximately equal the
channel spacing.

3

katgpucbf, Release 0.1.dev290+gf385556

2.4 Correlation products

Given a baseline (p, q) and time-varying channelised voltages 𝑒𝑝 and 𝑒𝑞 , the correlation product is the sum of 𝑒𝑝𝑒𝑞 over
the accumulation period. This is computed in integer arithmetic and so is lossless except when saturation occurs.

2.5 Narrowband

Todo: Document the down-conversion filter

2.6 Delay and phase compensation

The delay sign convention is such that a input voltage sample with timestamp 𝑡 will have an output timestamp of 𝑡+ 𝑑
(where 𝑑 is the delay). In other words, the specified values are amounts by which the incoming signals should be
delayed to align them.

To correctly apply delay with sub-sample precision, it is necessary to know the original (“sky”) frequency of the signal,
before mixing and aliasing to baseband. The user supplies this indirectly by specifying the phase correction that must
be applied at the centre frequency, i.e. −2𝜋𝑓𝑐𝑑, where 𝑓𝑐 is the centre frequency. This calculation is provided by
katpoint.delay.DelayCorrection.

4 Chapter 2. Mathematical background

https://katpoint.readthedocs.io/en/latest/katpoint.html#katpoint.delay.DelayCorrection

CHAPTER

THREE

CHANGELOG

Version 0.1

• Initial release. Wideband correlator functionality is considered stable.

5

katgpucbf, Release 0.1.dev290+gf385556

6 Chapter 3. Changelog

CHAPTER

FOUR

SYSTEM REQUIREMENTS

For basic operation (such as for development or proof-of-concept) the only hardware requirement is an NVIDIA GPU
with tensor cores. The rest of this section describes recommended setup for high-performance operation.

4.1 Networking

An NVIDIA NIC (ConnectX or Bluefield) should be used, as katgpucbf can bypass the kernel networking stack when
using one of these NICs. See the spead2 documentation for details on setting up and tuning the ibverbs support. Pay
particular attention to disabling multicast loopback.

The correlator uses multicast packets to communicate between the individual engines. Your network needs to be set
up to handle multicast, and to do so efficiently (i.e., not falling back to broadcasting). Note that the out-of-the-box
configuration for Spectrum switches running Onyx allocates very little buffer space to multicast traffic, which can
easily lead to lost packets. Refer to the manual for your switch to adjust the buffer allocations.

The engines also default to using large packets (8 KiB of payload, plus some headers), so your network needs to
be configured to support jumbo frames. While there are command-line options to reduce the packet sizes, this will
significantly reduce performance.

4.2 BIOS settings

See the system tuning guidance in the spead2 documentation. In particular, we’ve found that when running multiple
F-engines per host on an AMD Epyc (Milan) system, we get best performance with

• NPS1 setting for NUMA per socket (NPS2 might work too, but NPS4 tends to cause sporadic lost packets);

• the GPU and the NIC in slots attached to different host bridges.

7

https://spead2.readthedocs.io/en/latest/py-ibverbs.html
https://spead2.readthedocs.io/en/latest/perf.html

katgpucbf, Release 0.1.dev290+gf385556

8 Chapter 4. System requirements

CHAPTER

FIVE

INSTALLATION

5.1 Installation with Docker

The recommended way to use katgpucbf is via Docker. There is currently no published Docker image, so it is necessary
to build your own. To do so, change to the root directory of the repository and run

docker build -t NAME .

where NAME is the name to assign to the image.

You will need to have the NVIDIA container runtime installed to provide Docker with access to the GPU.

5.2 Installation with pip

It is also possible to install katgpucbf with pip. In this case, you will need to have CUDA already installed, as well as
Vulkan drivers1. Change to the root directory of the repository and run

pip install ".[gpu]"

Note that if you are planning to do development on katgpucbf, you should refer to the Developers’ guide.

1 Standard driver installation should include Vulkan support, although you may need to install a package such as libvulkan1.

9

katgpucbf, Release 0.1.dev290+gf385556

10 Chapter 5. Installation

CHAPTER

SIX

OPERATION

There are two main scenarios involved in starting up and interacting with katgpucbf and its constituent engines:

1. the instantiation and running of a complete end-to-end correlator, and

2. the invocation of individual engines (dsim, fgpu, xbgpu) for more fine-grained testing and debugging.

The first requires a mechanism to orchestrate the simultaneous spin-up of a correlator’s required components - that is,
some combination of dsim(s), F-Engine(s) and XB-Engine(s). For this purpose, katgpucbf utilises the infrastructure
provided by katsdpcontroller - discussed in the following section.

Regarding the testing and debugging of individual engines, more detailed explanations of their inner-workings are
discussed in their respective, more dedicated-discussion documents.

The main thing to note is that, in both methods of invocation (via orchestration and individually), the engines support
control via katcp commands issued to their <host>:<port>. netcat (nc) is likely the most readily-available tool for
this job, but ntsh neatens up these exchanges and generally makes it easier to interact with.

6.1 katsdpcontroller

This package (katgpucbf) provides the components of a correlator (engines and simulators), but not the mechanisms to
start up and orchestrate all the components as a cohesive unit. That is provided by katsdpcontroller.

For production use it is strongly recommended that katsdpcontroller is used to manage the correlator. Nevertheless, it
is possible to run the individual pieces manually, or to implement an alternative controller. The remaining sections in
this chapter describe the interfaces that are used by katsdpcontroller to communicate with the correlator components.

There are two parts to katsdpcontroller: a master controller and a product controller. There is a single product controller
per instantiated correlator. It is responsible for:

• starting up the appropriate correlator components with suitable arguments, given a high-level description of the
desired correlator configuration;

• monitoring the health of those components;

• registering them with Consul, so that infrastructure such as Prometheus can discover them;

• proxying their katcp sensors, so that clients need only subscribe to sensors from the product controller rather
than individual components;

• in some cases, aggregating or renaming those sensors, to present a correlator-wide suite of sensors, without
clients needing to know about the individual engines;

• providing additional correlator-wide katcp sensors;

• providing correlator-wide katcp requests, which are implemented by issuing similar but finer-grained requests to
the individual engines.

11

https://github.com/ska-sa/katsdpcontroller
https://www.commandlinux.com/man-page/man1/nc.1.html
https://pypi.org/project/ntsh/
https://github.com/ska-sa/katsdpcontroller
https://www.consul.io/
https://prometheus.io/

katgpucbf, Release 0.1.dev290+gf385556

The master controller manages product controllers (and hence correlators), starting them up and shutting them down
on request from the user. In a system supporting subarrays, there will typically be a single master controller and zero
or more product controllers at any one time.

It is worth noting that katsdpcontroller was originally written to control the MeerKAT Science Data Processor and later
extended to control correlators, so it has a number of features, requests and sensors that are not relevant to correlators.

6.2 Starting the correlator

The katgpucbf repository comes with a scratch/ directory, under which you will find handy scripts for correlator and
engine invocation. Granted, the layout and usage of these scripts is tailored to SARAO DSP’s internal lab development
environment (e.g. host and interface names) and don’t necessarily go through the same reviewing rigour as the actual
codebase. For these reasons, it is recommended that these scripts are used more as an example of how to run components
of katgpucbf, rather than set-in-stone modi operandi.

6.2.1 End-to-end correlator startup

If you intend on starting up a correlator with sim_correlator.py, you will require a running master controller in
accordance with katsdpcontroller. The script itself provides an array of options for you to start your correlator; running
./sim_correlator.py --help gives a brief explanation of the arguments required. Below is an example of a full
command to run a 4k, 4-antenna, L-band correlator:

./sim_correlator -a 4 -c 4096 -i 0.5
--adc-sample-rate 1712e6
--name my_test_correlator
--image-override katgpucbf:harbor.sdp.kat.ac.za/dpp/katgpucbf:latest
lab5.sdp.kat.ac.za

The execution of this command contacts the master controller to request a new correlator product to be configured.
The master controller figures out how many of each respective engine is required based on these input parameters, and
launches them accordingly across the pool of processing nodes available.

6.2.2 Individual engine startup

The arguments required for individual engine invocation can be seen by running one of {dsim, fgpu, xbgpu}
--help in an appropriately-configured terminal environment. There are a few mandatory ones, and ultimately stitch-
ing the entire incantation together by hand can become tiresome. For this reason, the scripts under scratch/{fgpu,
xbgpu} have been shipped with the module.

The scripts for standalone engine usage are prepopulated with typical configuration values for your convenience, and
are usually named run-{dsim, fgpu, xbgpu}.sh. It is important to note that the F- and XB-Engines can run in a
standalone manner, but will require some form of stimulus to truly exercise the engine. For example, fgpu requires a
corresponding dsim to produce data for ingest. Similarly, xbgpu requires an appropriately-configured fsim. Basically,
the engines will do nothing until explicitly asked to.

Todo: NGC-730 Update scratch directory to have a single config sub-directory. Also add comments on the scripts
themselves to make it easier to follow.

Note: Before considering which engine you intend on testing, note the number of GPUs available in the target pro-
cessing node. The CUDA library acknowledges the presence of a CUDA_VISIBLE_DEVICES environment variable,

12 Chapter 6. Operation

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars

katgpucbf, Release 0.1.dev290+gf385556

similar to that discussed by katsdpsigproc. You can simply export CUDA_VISIBLE_DEVICES=0 in your terminal
environment for the engine invocation to acknowledge your intention of using a particular GPU.

To test a 4k, 4-antenna XB-Engine processing L-band data, use the following commands in separate terminals on two
separate servers. This will launch a single F-Engine Packet Simulator on host1 and a single xbgpu instance on host2:

[Connect to host1 and activate the local virtual environment]
(katgpucbf) user@host1:~/katgpucbf$ spead2_net_raw fsim --interface <interface name> --
→˓ibv \

--array-size 4 --channels 4096 \
--channels-per-substream 1024 \
239.10.10.10+1:7148

.

.

.
[Connect to host2 and activate the local virtual environment]
(katgpucbf) user@host2:~/katgpucbf$ spead2_net_raw numactl -C 1 xbgpu \

--src-affinity 0 --src-comp-vector 0 \
--dst-affinity 1 --dst-comp-vector 1 \
--src-interface <interface name> \
--dst-interface <interface name> \
--src-ibv --dst-ibv \
--adc-sample-rate 1712e6 --array-size 4 \
--channels 4096 \
--channels-per-substream 1024 \
--samples-between-spectra 8192 \
--katcp-port 7150 \
239.10.10.10:7148 239.10.11.10:7148

Naturally, it is up to the user to ensure command-line parameters are consistent across the components under test, e.g.
using the same --array-size is for the data generated (in the fsim) and the xbgpu instance.

Note: ibverbs requires CAP_NET_RAW capability on Linux hosts. See spead2’s discussion on ensuring this is configured
correctly for your usage.

Pinning thread affinities

Todo: NGC-730 Update run-{dsim, fpgu, xbgpu}.sh scripts to standardise over usage of either numactl or
taskset.

spead2’s performance tuning discussion outlines the need to set the affinity of all threads that aren’t specifically pinned
by --{src, dst}-affinity. This is often the main Python thread, but libraries like CUDA tend to spin up helper
threads.

6.2. Starting the correlator 13

https://katsdpsigproc.readthedocs.io/en/latest/installation.html#configuration
https://spead2.readthedocs.io/en/latest/tools.html#spead2-net-raw
https://spead2.readthedocs.io/en/latest/perf.html

katgpucbf, Release 0.1.dev290+gf385556

Testing without a high-speed data network

katgpucbf allows the user to develop, debug and test its engines without the use of a high-speed e.g. 100GbE data
network. The omission of --{src, dst}-ibv command-line parameters avoids receiving data via the Infiniband
Verbs API. This means that if you wish to e.g. capture engine data on a machine that doesn’t support ibverbs, you could
use tcpdump(8).

Note: The data rates you intend to process are still limited by the NIC in your host machine. To truly take advantage
of running engines without a high-speed data network, consider reducing the --adc-sample-rate by e.g. a factor of
ten as this value greatly affects the engine’s data transmission rate.

6.3 Controlling the correlator

The correlator components are controlled using katcp. A user can connect to the <host>:<port> and issue a ?help
to see the full range of commands available. The <host> and <port> values for individual engines are configurable
at runtime, whereas the <host> and <port> values for the correlator’s product controller are yielded by the master
controller after startup. Standard katcp requests (such as querying and subscribing to sensors) are not covered here;
only application-specific requests are listed. Sensors are described in katcp sensors.

6.3.1 dsim

?signals spec [period]
Change the signals that are generated. The signal specification is described in Signal specification. The resulting
signal will be periodic with a period of period samples. The given period must divide into the --max-period
command-line argument, which is also the default period if none is specified.

The dither that is applied is cached on startup, but is independent for the different streams. Repeating the same
command thus gives the same results, provided any randomised terms (such as wgn) use fixed seeds.

It returns an ADC timestamp, which indicates the next sample which is generated with the new signals. This
is kept for backwards compatibility, but the same information can be found in the steady-state-timestamp
sensor.

?time
Return the current UNIX timestamp on the server running the dsim. This can be used to get an approximate idea
of which data is in flight, without depending on the dsim host and the client having synchronised clocks.

6.3.2 fgpu

?gain stream input [values...]
Set the complex gains. This has the same semantics as the equivalent katsdpcontroller command, but input
must be 0 or 1 to select the input polarisation.

?gain-all stream values...
Set the complex gains for both inputs. This has the same semantics as the equivalent katsdpcontroller command.

?delays stream start-time values...
Set the delay polynomials. This has the same semantics as the equivalent katsdpcontroller command, but takes
exactly two delay model specifications (for the two polarisations).

14 Chapter 6. Operation

https://katcp-python.readthedocs.io/en/latest/_downloads/361189acb383a294be20d6c10c257cb4/NRF-KAT7-6.0-IFCE-002-Rev5-1.pdf

katgpucbf, Release 0.1.dev290+gf385556

6.3.3 xbgpu

?capture-start, ?capture-stop
Enable or disable transmission of output data. This does not affect transmission of descriptors, which cannot be
disabled. In the initial state transmission is disabled, unless the --tx-enabled command-line option has been
passed.

6.4 Shutting down the correlator

6.4.1 End-to-end correlator shutdown

A user can issue a ?product-deconfigure command to the correlator’s product controller by connecting to its
<host>:<port>. This command triggers the stop procedure of all engines and dsims running in the target correlator.
More specifically:

• the product controller instructs the orchestration software to stop the containers running the engines,

• which is received by the engines as a SIGTERM,

• finally triggering a halt in the engines for a graceful shutdown.

The shutdown procedures are broadly similar between the dsim, fgpu and xbgpu. Ultimately they all:

• finish calculations on data currently in their pipelines,

• stop the transmission of their SPEAD descriptors, and

• in the case of fgpu and xbgpu, stop their spead2 receivers, which allows for a more natural ending of internal
processing operations.

6.4.2 Individual engine shutdown

Once you’ve sufficiently tested, debugged and/or reached the desired level of confusion, there are two options for engine
shutdown:

1. simply issue a Ctrl + C in the terminal window where the engine was invoked, or

2. connect to the engine’s <host>:<port> and issue a ?halt.

After either of these approaches are executed, the engine will shutdown cleanly and quietly according to their common
Shutdown procedures. As the F-Engine Packet Simulator is a simple CLI utility, the fsim just requires a Ctrl + C to
end operations - no katcp commands supported here.

6.4. Shutting down the correlator 15

katgpucbf, Release 0.1.dev290+gf385556

16 Chapter 6. Operation

CHAPTER

SEVEN

MONITORING

There are two production mechanisms for monitoring components of the correlator: katcp sensors and Prometheus
metrics.

These have different strengths and weaknesses. Prometheus is highly scalable (so can handle a large number of metrics),
supports metric labels, and has a rich ecosystem (such as Grafana for easily visualising metrics). On the other hand,
katcp sensors can be more precisely timestamped and support arbitrary string values (often containing structured data)
rather than just floating-point.

In general, we use katcp sensors for information that should be archived alongside the data to facilitate its interpretation,
as well as sensors that are needed by other subsystems in the MeerKAT telescope. Prometheus metrics are used for
detailed health and performance monitoring. However, this rule is not hard-and-fast, and some information is reported
via sensors for historical reasons.

There is a third monitoring mechanism (event monitoring) intended for development purposes.

7.1 katcp sensors

The katcp sensors are self-documenting: issuing a ?sensor-list request to any of the servers will return a list of the
sensors with descriptions. We thus limit this section to sensors that need a more detailed explanation.

It should be noted that a large number of sensors describing static configuration (number of channels, accumulation
length and so on) are provided by the product controller rather than this module.

steady-state-timestamp
This sensor is provided by both dsim and fgpu. It can be used to synchronise katcp requests with the data. After
issuing a katcp request that will alter the data stream (such as ?signals, ?gain or ?delay), query the sensor.
It will contain an ADC timestamp. Any data received with that timestamp or greater will be up to date with the
effects of all prior requests.

It should be noted that a ?delay request with a future load time is considered to have taken effect when the delay
model has been updated, even if that load time has not yet been reached.

It should also be noted that the sensor value from a dsim does not take into account any delays applied by F
engines. One should add the delay of the corresponding F engine (or an upper bound on it) to obtain a safe
timestamp for post-F engine data streams.

signals, period and dither-seed (dsim)
To reproduce the output of the dsim exactly, it is necessary to save all three of these sensors, and pass the
dither-seed back to the --dither-seed command-line option and the other two to the ?signals request
(as well as keeping other command-line arguments the same).

17

https://katcp-python.readthedocs.io/en/latest/_downloads/361189acb383a294be20d6c10c257cb4/NRF-KAT7-6.0-IFCE-002-Rev5-1.pdf
https://prometheus.io/
https://grafana.com

katgpucbf, Release 0.1.dev290+gf385556

7.2 Prometheus metrics

To enable Prometheus metrics for any of the services, pass --prometheus-port to specify the port number. The
metrics are then made available at the /metrics HTTP endpoint on that port. Pointing a web browser at that endpoint
will show the available metrics with their documentation.

7.3 Event monitoring

It is also possible to perform very detailed monitoring of events occurring within fgpu and xbgpu, particularly related
to time spent waiting on queues. This is intended for debugging performance issues rather than production use, as it
has much higher overhead than the other monitoring mechanisms. To activate it, pass --monitor-log with a filename
to the process. It will write a file with a JSON record per line. The helper script in scratch/plot.py can be used to
show a visualisation of the various queues over time. It’s not recommended for more than a few seconds of data.

18 Chapter 7. Monitoring

CHAPTER

EIGHT

DATA INTERFACES

Todo: If this section gets to be too large, it can probably also make its way into its own file.

8.1 SPEAD Protocol

The Streaming Protocol for Exchanging Astronomical Data (SPEAD) is a lightweight streaming protocol, primarily
UDP-based, designed for components of a radio astronomy signal-chain to transmit data to each other over Ethernet
links.

The SPEAD implementation used in katgpucbf is spead2. It is highly recommended that consumers of katgpucbf
output data also make use of spead2. For those who cannot, this document serves as a brief summary of the SPEAD
protocol in order to understand the output of each application within katgpucbf , which are further detailed elsewhere.

SPEAD transmits logical collections of data known as heaps. A heap consists of one or more UDP packets. A SPEAD
transmitter will decompose a heap into packets and the receiver will collect all the packets and reassemble the heap.

8.2 Packet Format

A number of metadata fields are included within each packet, to facilitate heap reassembly. The SPEAD flavour used
in katgpucbf is 64-48, which means that each metadata field is 64 bits wide, with the first bit indicating the address
mode, the next 15 carrying the item ID and the remaining 48 carrying the value (in the case of immediate items).

Each packet contains the following metadata fields:

header
Contains information about the flavour of SPEAD being used.

heap counter/id
A unique identifier for each new heap.

heap size
Size of the heap in bytes.

heap offset
Address in bytes indicating the current packet’s location within the heap.

payload size
Number of bytes within the current packet payload.

Each SPEAD stream will have additional 64-bit fields specific to itself, referred to in SPEAD nomenclature as imme-
diate items. Each packet transmitted will contain all the immediate items to assist third-party consumers that prefer to

19

https://spead2.readthedocs.io/en/latest/_downloads/6160ba1748b1812337d9c7766bdf747a/SPEAD_Protocol_Rev1_2012.pdf
https://spead2.readthedocs.io/en/latest/py.html#module-spead2
https://spead2.readthedocs.io/en/latest/py.html#module-spead2

katgpucbf, Release 0.1.dev290+gf385556

work at the packet level (see spead2.send.Heap.repeat_pointers— note that this is not default spead2 behaviour,
but it is always enabled in katgpucbf).

Most of the metadata remains constant for all packets in a heap. The heap offset changes across packets, in multiples of
the packet size (which is configurable at runtime). This is used by the receiver to reassemble packets into a full heap.

The values contained in the immediate items may change from heap to heap, or they may be static, with the data payload
being the only changing thing, depending on the nature of the stream.

8.3 F-Engine Data Format

8.3.1 Input

The F-engine receives dual-polarisation input from a digitiser (raw antenna) stream. In MeerKAT and MeerKAT Ex-
tension, each polarisation’s raw digitiser data is distributed over eight contiguous multicast addresses, to facilitate load-
balancing on the network, but the receiver is flexible enough to accept input from more or fewer multicast addresses.

The only immediate item in the digitiser’s output heap used by the F-engine is the timestamp.

8.3.2 Output Packet Format

In addition to the fields described in SPEAD’s Packet Format above, the F-Engine’s have an output data format as
follows - formally labelled elsewhere as Channelised Voltage Data SPEAD packets. These immediate items are
specific to the F-Engine’s output stream.

timestamp
A number to be scaled by an appropriate scale factor, provided as a KATCP sensor, to get the number of Unix
seconds since epoch of the first time sample used to generate data in the current SPEAD heap.

feng_id
Uniquely identifies the F-engine source for the data. A sensor can be consulted to determine the mapping of
F-engine to antenna antenna input. The X-engine uses this field to distinguish data received from multiple F-
engines.

frequency
Identifies the first channel in the band of frequencies in the SPEAD heap. Can be used to reconstruct the full
spectrum. Although each packet may represent a different frequency, this value remains constant across a heap
and represents only the first frequency channel in the range of channels within the heap. The X-engine does not
strictly need this information.

feng_raw item pointer
Channelised complex data from both polarisations of digitiser associated with F-engine. Real comes before
imaginary and input 0 before input 1. A number of consecutive samples from each channel are in the same
packet.

The F-engines in an array each transmit a subset of frequency channels to each X-engine, with each X-engine receiving
from a single multicast group. F-engines therefore need to ensure that their heap IDs do not collide.

20 Chapter 8. Data Interfaces

https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.Heap.repeat_pointers

katgpucbf, Release 0.1.dev290+gf385556

8.4 X-Engine Data Format

8.4.1 Input

The X-Engine receives antenna channelised data from the output of the F-engines, as discussed above. Each X-Engine
receives data from each F-engine, but only from a subset of the channels.

8.4.2 Output Packet Format

In addition to the fields described in SPEAD’s Packet Format above, the X-Engine’s have an output data format as
follows - formally labelled elsewhere as Baseline Correlation Products. These immediate items are specific to the
X-Engine’s output stream.

frequency
Identifies the first channel in the band of frequencies in the SPEAD heap. Although each packet represents a
different frequency, this value remains constant across a heap and represents only the first frequency channel in
the range of channels within the heap.

timestamp
A number to be scaled by an appropriate scale factor, provided as a KATCP sensor, to get the number of Unix
seconds since epoch of the first time sample used to generate data in the current SPEAD heap.

xeng_raw item pointer
Integrated Baseline Correlation Products; packed in an order described by the KATCP sensor
xeng-stream-name-bls-ordering. Real values are before imaginary. The bandwidth and centre fre-
quencies of each sub-band are subject to the granularity offered by the X-engines.

In MeerKAT Extension, four correlation products are computed for each baseline, namely vv, hv, vh, and hh. Thus, for
an 80-antenna correlator, there are 𝑛(𝑛+1)

2 = 3240 baselines, and 12960 correlation products. The parameter n-bls
mentioned under xeng_raw refers to the latter figure.

Each X-engine sends data to its own multicast group. A receiver can combine data from several multicast groups to
consume a wider spectrum, using the frequency item to place each heap. To facilitate this, X-engine output heap IDs
are kept unique across all X-engines in an array.

8.4. X-Engine Data Format 21

katgpucbf, Release 0.1.dev290+gf385556

22 Chapter 8. Data Interfaces

CHAPTER

NINE

DSP ENGINE DESIGN

9.1 Terminology

We will use OpenCL terminology, as it is more generic. If you’re more familiar with CUDA terminology, katsdpsig-
proc’s introduction has a table mapping the most important concepts. For definitions of the concepts, refer to chapter
2 of the OpenCL specification. A summary of the most relevant concepts can also be found here.

9.2 Glossary

This section serves (hopefully) to clarify some potentially confusing terms used within the source code.

Chunk
An array of data and associated metadata, including a timestamp. Chunks are the granularity at which data
is managed within an engine (e.g., for transfer between CPU and GPU). To amortise per-chunk costs, chunks
typically contain many SPEAD heaps.

Command Queue
Channel for submitting work to a GPU. See katsdpsigproc.abc.AbstractCommandQueue.

Device
GPU or other OpenCL accelerator device (which in general could even be the CPU). See katsdpsigproc.abc.
AbstractDevice.

Engine
A single process which consumes and/or produces SPEAD data, and is managed by katcp. An F-engine processes
data for one antenna; an XB-Engine processes data for a configurable subset of the correlator’s bandwidth. It is
expected that a correlator will run more than one engine per server.

Event
Used for synchronisation between command queues or between a command queue and the host. See
katsdpsigproc.abc.AbstractEvent.

Heap
Basic message unit of SPEAD. Heaps may comprise one or more packets.

Queue
See asyncio.Queue. Not to be confused with Command Queues.

Queue Item
See QueueItem . These are passed around on Queues.

Stream
A stream of SPEAD data. The scope is somewhat flexible, depending on the viewpoint, and might span one or
many multicast groups. For example, one F-engine sends to many XB-engines (using many multicast groups),

23

https://katsdpsigproc.readthedocs.io/en/latest/user/intro.html
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
http://downloads.ti.com/mctools/esd/docs/opencl/execution/terminology.html
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractDevice
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractDevice
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractEvent
https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue

katgpucbf, Release 0.1.dev290+gf385556

and this is referred to as a single stream in the fgpu code. Conversely, an XB-engine receives data from many
F-engines (but using only one multicast group), and that is also called “a stream” within the xbgpu code.

This should not be confused with a CUDA stream, which corresponds to a Command Queue in OpenCL termi-
nology.

Stream Group
A group of incoming streams whose data are combined in chunks (see spead2.recv.
ChunkStreamRingGroup). Stream groups can be logically treated like a single stream, but allow receiving to
be scaled across multiple CPU cores (with one member stream per thread).

Timestamp
Timestamps are expressed in units of ADC (analogue-to-digital converter) samples, measured from a config-
urable “sync time”. When a timestamp is associated with a collection of data, it generally reflects the timestamp
of the first ADC sample that forms part of that data.

9.3 Operation

The general operation of the DSP engines is illustrated in the diagram below: The F-engine uses two input streams and

Stream group

Copy to GPU

GPU processing GPU processing

Copy from GPU

Transmit

Stream

Copy from GPU

Transmit

Stream

Stream Stream

Fig. 1: Data Flow. Double-headed arrows represent data passed through a queue and returned via a free queue.

24 Chapter 9. DSP Engine Design

https://spead2.readthedocs.io/en/latest/py-recv-chunk-group.html#spead2.recv.ChunkStreamRingGroup
https://spead2.readthedocs.io/en/latest/py-recv-chunk-group.html#spead2.recv.ChunkStreamRingGroup
https://spead2.readthedocs.io/en/latest/py-recv-chunk-group.html#spead2.recv.ChunkStreamGroupMember

katgpucbf, Release 0.1.dev290+gf385556

aligns two incoming polarisations, but in the XB-engine there is only one.

There might not always be multiple processing pipelines. When they exist, they are to support multiple outputs gen-
erated from the same input, such as wide- and narrow-band F-engines, or correlation products and beams. Separate
outputs use separate output streams so that they can interleave their outputs while transmitting at different rates. They
share a thread to reduce the number of cores required.

9.3.1 Chunking

GPUs have massive parallelism, and to exploit them fully requires large batch sizes (millions of elements). To accom-
modate this, the input packets are grouped into “chunks” of fixed sizes. There is a tradeoff in the chunk size: large
chunks use more memory, add more latency to the system, and reduce LLC (last-level cache) hit rates. Smaller chunks
limit parallelism, and in the case of the F-engine, increase the overheads associated with overlapping PFB (polyphase
filter bank) windows.

Chunking also helps reduce the impact of slow Python code. Digitiser output heaps consist of only a single packet, and
while F-engine output heaps can span multiple packets, they are still rather small and involving Python on a per-heap
basis would be far too slow. We use spead2.recv.ChunkRingStream or spead2.recv.ChunkStreamRingGroup
to group heaps into chunks, which means Python code is only run per-chunk.

9.3.2 Queues

Both engines consist of several components which run independently of each other — either via threads (spead2’s
C++ code) or Python’s asyncio framework. The general pattern is that adjacent components are connected by a pair of
queues: one carrying full buffers of data forward, and one returning free buffers. This approach allows all memory to
be allocated up front. Slow components thus cause back-pressure on up-stream components by not returning buffers
through the free queue fast enough. The number of buffers needs to be large enough to smooth out jitter in processing
times.

A special case is the split from the receiver into multiple processing pipelines. In this case each processing pipeline has
an incoming queue with new data (and each buffer is placed in each of these queues), but a single queue for returning
free buffers. Since a buffer can only be placed on the free queue once it has been processed by all the pipelines, a
reference count is held with the buffer to track how many usages it has. This should not be confused with the Python
interpreter’s reference count, although the purpose is similar.

9.3.3 Transfers and events

To achieve the desired throughput it is necessary to overlap transfers to and from the GPU with its computations.
Transfers are done using separate command queues, and an CUDA/OpenCL event (see the glossary) is associated with
the completion of each transfer. Where possible, these events are passed to the device to be waited for, so that the CPU
does not need to block. The CPU does need to wait for host-to-device transfers before putting the buffer onto the free
queue, and for device-to-host transfers before transmitting results, but this is deferred as long as possible.

The above concepts are illustrated in the following figure:

9.3. Operation 25

https://spead2.readthedocs.io/en/latest/py-recv-chunk.html#spead2.recv.ChunkRingStream
https://spead2.readthedocs.io/en/latest/py-recv-chunk-group.html#spead2.recv.ChunkStreamRingGroup

katgpucbf, Release 0.1.dev290+gf385556

upload
command

queue

Copy CPU
→ GPU

Recycle CPU
Memory

async_wait_for_events()

Process

enqueue_wait_for_events()

processing
command

queue

Copy GPU
→ CPU

enqueue_wait_for_events()

download
command

queue

Transmit

async_wait_for_events()

Fig. 2: GPU command queues, showing the upload, processing and download command queues, and the events (shown
in green) used for synchronisation.

9.4 Common features

9.4.1 Shutdown procedures

The dsim, fgpu and xbgpu all make use of the aiokatcp server’s on_stop feature which allows for any engine-
specific clean-up to take place before coming to a final halt.

The on_stop procedure is broadly similar between the dsim, fgpu and xbgpu.

• The dsim simply stops its internal calculation and sending processes of data and descriptors respectively.

• fgpu and xbgpu both stop their respective spead2 receivers, which allows for a more natural ending of internal
processing operations.

– Each stage of processing passes a None-type on to the next stage,

– Eventually resulting in the engine sending a SPEAD stop heap across its output streams.

26 Chapter 9. DSP Engine Design

https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.server.DeviceServer
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.server.DeviceServer.on_stop
https://spead2.readthedocs.io/en/latest/recv-chunk.html
https://spead2.readthedocs.io/en/latest/py-protocol.html

CHAPTER

TEN

F-ENGINE DESIGN

A somewhat higher-level view of the design can be found in [Merry2023]. The paper is based on an earlier version of
this code (which pre-dates the narrowband support, for example).

We start by describing the design for wideband output. Narrowband outputs use most of the same components, but
have extra complications, which are described in a separate section.

10.1 Network receive

The data from both polarisations are received by a single stream group, and polarisation forms the major axis of each
chunk. The stream group may comprise multiple streams to support receive bandwidths that cannot be handled by a
single thread. The polarisation of each packet is identified by a flag in the SPEAD items of the packet, rather than by
the network interface or multicast group it was directed to.

To minimise the number of copies, chunks are initialised with CUDA pinned memory (host memory that can be effi-
ciently copied to the GPU). Alternatively, it is possible to use vkgdr to have the CPU write directly to GPU memory
while assembling the chunk. This is not enabled by default because it is not always possible to use more than 256 MiB
of the GPU memory for this, which can severely limit the chunk size.

10.2 GPU Processing

The actual GPU kernels are reasonably straight-forward, because they’re generally memory-bound rather than compute-
bound. The main challenges are in data movement through the system.

10.2.1 Decode

Digitiser samples are bit-packed integers. While it is possible to write a dedicated kernel for decoding that makes
efficient accesses to memory (using contiguous word-size loads), it is faster overall to do the decoding as part of the
PFB filter because it avoids a round trip to memory. For the PFB, the decode is done in a very simple manner:

1. Determine the two bytes that hold the sample.

2. Load them and combine them into a 16-bit value.

3. Shift left to place the desired bits in the high bits.

4. Shift right to sign extend.

5. Convert to float.

27

https://github.com/ska-sa/vkgdr

katgpucbf, Release 0.1.dev290+gf385556

While many bytes get loaded twice (because they hold bits from two samples), the cache is able to prevent this affecting
DRAM bandwidth.

For the above to work, every sample needs to be entirely contained within two bytes. This will be the case for up to 10
bits, as well as for 12- or 16-bit samples, and hence these are the values supported. For 3-, 5-, 6- and 7-bit samples,
the sample will sometimes but not always be contained in a single byte; in these cases an extraneous byte is loaded.
This could be the byte following the end of the buffer; to handle this, a padding byte is added to avoid illegal memory
accesses. For 2-, 4- and 8-bit samples, the value will always be contained in a single byte, and a simplified code path
is used in these cases.

The narrowband digital down conversion also decodes the packed samples, but this is discussed separately.

10.2.2 Polyphase Filter Bank

The polyphase filter bank starts with a finite impulse response (FIR) filter, with some number of taps (e.g., 16), and
a step size which is twice the number of output channels. This can be thought of as organising the samples as a 2D
array, with step columns, and then applying a FIR down each column. Since the columns are independent, we map each
column to a separate workitem, which keeps a sliding window of samples in its registers. GPUs generally don’t allow
indirect indexing of registers, so loop unrolling (by the number of taps) is used to ensure that the indices are known at
compile time.

This might not give enough parallelism, particularly for small channel counts, so in fact each column in split into
sections and a separate workitem is used for each section. There is a trade-off here as samples at the boundaries
between sections need to be loaded by both workitems, leading to overheads.

Registers are used to hold both the sliding window and the weights, which leads to significant register pressure. This
reduces occupancy and leads to reduced performance, but it is still good for up to 16 taps. For higher tap counts it
would be necessary to redesign the kernel.

The weights are passed into the kernel as a table, rather than computed on the fly. While it may be possible to compute
weights on the fly, using single precision in the computation would reduce the accuracy. Instead, we compute weights
once on the host in double precision and then convert them to single precision.

A single FIR may also need to cross the boundary between chunks. To handle this, we allocate sufficient space at the
end of each chunk for the PFB footprint, and copy the start of the next chunk to the end of the current one. Note that
this adds an extra chunk worth of latency to the process.

10.2.3 FFT

After the FIR above, we can perform the FFT, which is done with cuFFT. The built-in support for doing multiple FFTs
at once means that it can saturate the GPU even with small channel counts.

Naïvely using cuFFT for the full real-to-complex transformation can be quite slow and require multiple passes over the
memory, because

1. There is a maximum number of channels that cuFFT can handle in one pass (it depends on the GPU, but seems
to be 16384 for a GeForce RTX 3080 Ti). Larger transforms require at least one more pass.

2. It appears to handle real-to-complex transforms by first doing a complex-to-complex transform and then using
an additional pass to fix up the result (i.e. form final FFT output).

For performance reasons, we move part of the Fourier Transform into the post-processing kernel, and also handle fixing
up the real-to-complex transformation. This is achieved by decomposing the transformation into separately-computed
smaller parts (using the Cooley-Tukey algorithm). Part of the Fourier transform is computed using cuFFT and the final
stage (post-processing kernel) of the process includes one round of Cooley-Tukey computation and the computation to
form the real-to-complex transformation.

28 Chapter 10. F-Engine Design

katgpucbf, Release 0.1.dev290+gf385556

To start, let’s consider the traditional equation for the Fourier Transform. Let 𝑁 be the number of channels into which
we wish to decompose the input sequence, and let 𝑥𝑖 be the (real) time-domain samples (0 ≤ 𝑖 < 2𝑁) and 𝑋𝑘 be its
discrete Fourier transform (DFT). Because the time domain is real, the frequency domain is Hermitian symmetric, and
we only need to compute half of it to recover all the information. We thus only need to consider 𝑘 from 0 to 𝑁 − 1
(this loses information about 𝑋𝑁 , but it is convenient to discard it and thus have a power-of-two number of outputs).

𝑋𝑘 =

2𝑁−1∑︁
𝑖=0

𝑒
−2𝜋𝑗
2𝑁 ·𝑖𝑘𝑥𝑖.

We know that a direct implementation of the DFT is inefficient and alternative, more efficient means exist to perform
this computation. One such method is the FFT introduced by Cooley-Tukey and in the GPU space cuFFT is one such
implementation. As highlighted earlier, transform sizes of greater than 16384 (for a GeForce RTX 3080 Ti at least)
require more than one memory pass making it less efficient than it needs to be. The technique detailed below uses the
decomposition as provided by Cooley-Tukey to break down a larger transform into smaller ‘sub-transforms’ where the
number of ‘sub-transforms’ is intentionally kept small for efficiency reasons and later combined (same process as the
FFT) to form the larger transform size. This is a multi-step process and requires some extra notation and math tricks.

Real-to-complex transform

Now for some notation to see how this works. We start by treating 𝑥 (a real array of length 2N) as if it is a complex
array 𝑧 of length N, with each adjacent pair of real values in 𝑥 interpreted as the real and imaginary components of
a complex value, and computing the Fourier transform of 𝑧. Formally, let 𝑢𝑖 = 𝑥2𝑖 and 𝑣𝑖 = 𝑥2𝑖+1. Then 𝑧𝑖 =
𝑢𝑖 + 𝑗𝑣𝑖 = 𝑥2𝑖 + 𝑗𝑥2𝑖+1.

We will start by computing the Fourier transform of 𝑧. Let 𝑈 , 𝑉 and 𝑍 denote the Fourier transforms of 𝑢, 𝑣 and 𝑧
respectively. Since the Fourier transform is a linear operator and we defined 𝑧 = 𝑢+ 𝑗𝑣, we also have 𝑍 = 𝑈 + 𝑗𝑉 .

It is important to remember that both 𝑢 and 𝑣 are real-valued, so 𝑈 and 𝑉 are Hermitian symmetric. By re-arranging
things we can reconstruct 𝑈 and 𝑉 from 𝑍 using Hermitian symmetry properties. Let 𝑈 ′ be 𝑈 with reversed indices
i.e., 𝑈 ′

𝑘 = 𝑈−𝑘 where indices are taken modulo 𝑁 .

Hermitian symmetry means that 𝑈 ′
𝑘 = 𝑈−𝑘 = 𝑈𝑘 where the ‘overline’ in 𝑈𝑘 denotes conjugation. This is effectively

saying that by taking the reverse indices in 𝑈𝑘 we get a conjugated result (see1 for a reminder of why this is the case).

Looking back at 𝑈 and 𝑉 components, 𝑈 ′ = 𝑈 and similarly 𝑉 ′ = 𝑉 . Why is this important? Previously we stated
that 𝑍 = 𝑈 + 𝑗𝑉 . Now we can consider the reverse of 𝑍, namely 𝑍 ′.

𝑍 ′ = 𝑈 ′ + 𝑗𝑉 ′

𝑍 ′ = 𝑈 ′ + 𝑗𝑉 ′

= 𝑈 ′ + 𝑗𝑉 ′

= 𝑈 − 𝑗𝑉

What we actually want is to be able to separate out 𝑈 and 𝑗𝑉 in terms of only 𝑍 and 𝑍 ′ (remember, 𝑧 is the input array
of real-valued samples reinterpreted as if it is an array of N complex samples).

Now let’s formulate both 𝑈 and 𝑉 in terms of 𝑍 and 𝑍 ′.

𝑍 + 𝑍 ′ = (𝑈 + 𝑗𝑉) + (𝑈 − 𝑗𝑉)

= 2𝑈 + 𝑗(𝑉 − 𝑉)

= 2𝑈.

1 Going back to the original definition for the DFT we saw the complex exponential 𝑒
−2𝜋𝑗
2𝑁

·𝑖𝑘 has a variable 𝑘 where 𝑘 represents the frequency
component under computation for the input sequence 𝑥𝑖. If 𝑘 is reversed (i.e. negative) the complex exponential changes to 𝑒

2𝜋𝑗
2𝑁

·𝑖𝑘 as the negative
in −𝑘 multiplies out.

10.2. GPU Processing 29

katgpucbf, Release 0.1.dev290+gf385556

Likewise,

𝑍 − 𝑍 ′ = (𝑈 + 𝑗𝑉)− (𝑈 − 𝑗𝑉)

= 2𝑗𝑉.

Using the above we can see that 𝑈 = 𝑍+𝑍′

2 and similarly 𝑉 = 𝑍−𝑍′

2𝑗 . Next, we use the Cooley-Tukey transform to
construct 𝑋 from 𝑈 and 𝑉 . To do this let’s go back to the initial definition of the DFT and expand that using the
Cooley-Tukey approach.

𝑋𝑘 =

2𝑁−1∑︁
𝑖=0

𝑒
−2𝜋𝑗
2𝑁 ·𝑖𝑘𝑥𝑖

=

𝑁−1∑︁
𝑖=0

𝑒
−2𝜋𝑗
2𝑁 ·2𝑖𝑘𝑢𝑖 +

𝑁−1∑︁
𝑖=0

𝑒
−2𝜋𝑗
2𝑁 ·(2𝑖+1)𝑘𝑣𝑖

=

𝑁−1∑︁
𝑖=0

𝑒
−2𝜋𝑗

𝑁 ·𝑖𝑘𝑢𝑖 + 𝑒
−𝜋𝑗
𝑁 ·𝑘

𝑁−1∑︁
𝑖=0

𝑒
−2𝜋𝑗

𝑁 ·𝑖𝑘𝑣𝑖

= 𝑈𝑘 + 𝑒
−𝜋𝑗
𝑁 ·𝑘𝑉𝑘.

What we get is a means to compute the desired output 𝑋𝑘 using the 𝑈 and 𝑉 which we compute from the complex-
valued input data sequence 𝑧.

We can also re-use some common expressions by computing 𝑋𝑁−𝑘 at the same time

𝑋𝑁−𝑘 = 𝑈𝑁−𝑘 + 𝑒
−𝜋𝑗
𝑁 ·(𝑁−𝑘)𝑉𝑁−𝑘

= 𝑈𝑘 − 𝑒
−𝜋𝑗
𝑁 ·𝑘𝑉𝑘.

This raises the question: Why compute both 𝑋𝑘 and 𝑋𝑁−𝑘? After all, parameter 𝑘 should range the full channel range
initially stated (parameter 𝑁). The answer: compute efficiency. It is costly to compute 𝑈𝑘 and 𝑉𝑘 so if we can use
them to compute two elements of 𝑋‘ (𝑋𝑘 and 𝑋𝑁−𝑘) at once it is better than producing only one element of 𝑋 .

Why is doing all this work more efficient that letting cuFFT handle the real-to-complex transformation? After all,
cuFFT most likely does this (or something equivalent) internally. The answer is that instead of using a separate kernel
for it (which would consume memory bandwidth), we built it into the postprocessing kernel (see the next section).

Unzipping the FFT

Right — lets get practical and show how we actually implement this. From here we’ll assume all transforms are
complex-to-complex unless specified otherwise. Firstly, some recap: the Cooley-Tukey algorithm allows a transform
of size 𝑁 = 𝑚𝑛 to be decomposed into 𝑛 transforms of size 𝑚 followed by 𝑚 transforms of size 𝑛. We’ll refer to 𝑛
as the “unzipping factor”. We will keep it small (typically not more than 4), as the implementation requires registers
proportional to this factor. We are now going to go step-by-step and separate the input array 𝑧 into 𝑛 parts of size 𝑚
with each part operated on using a Fourier transform.

To recap the indexing used in the Cooley-Tukey algorithm: let a time-domain index 𝑖 be written as 𝑞𝑛 + 𝑟 and a
frequency-domain index 𝑘 be written as 𝑝𝑚 + 𝑠. Let 𝑧𝑟 denote the array 𝑧𝑟, 𝑧𝑛+𝑟, . . . , 𝑧(𝑚−1)𝑛+𝑟, and denote its
Fourier transform by 𝑍𝑟. It is worthwhile to point out that the superscript 𝑟 does not denote exponentiation but rather
is a means to indicate an 𝑟𝑡ℎ array. In practice this 𝑟𝑡ℎ array is a subset (part) of the larger 𝑧 array of input data.

As a way of an example, let 𝑛 = 4 (“unzipping factor”) and 𝑁 = 32768 (total number of channels). Now let’s unpack
this a bit further — what is actually happening is that the initial array 𝑧 is divided into 𝑛 = 4 separate arrays each of
𝑚 = 32768/4 = 8192 elements (hence the 𝑁 = 𝑚𝑛 above). The actual samples that land up in each array are defined
by the indices 𝑖 and 𝑘.

30 Chapter 10. F-Engine Design

katgpucbf, Release 0.1.dev290+gf385556

Lets start with 𝑖. It was stated that 𝑖 = 𝑞𝑛 + 𝑟. The parameter 𝑟 takes on the range 0 to 𝑛 − 1 (so 𝑟 = 0 to 𝑟 = 3 as
𝑛 = 4) and 𝑞 takes on the range 0 to 𝑚 − 1 (i.e. 𝑞 = 0 to 𝑞 = 8191). So we are dividing up array 𝑧 into 𝑛 smaller
arrays denoted by 𝑟 (i.e. 𝑧𝑟) each of length 𝑚 = 8192. So what does this look like practically?

The first array when 𝑟 = 0 (i.e. 𝑧0)

Inputs Index
qn + r i
0 · 4 + 0 0
1 · 4 + 0 4
2 · 4 + 0 8
.
.
8191 · 4 + 0 32764

This can be extended to the other remaining arrays. The fourth array when 𝑟 = 3 (for example), 𝑧3 is 𝑧3, 𝑧7, 𝑧11, . . . ,
𝑧32767.

What this shows is that each sub-array consists of samples from the initial array 𝑧 indexed by 𝑖 = 𝑞𝑛 + 𝑟 where each
sample is every 4𝑡ℎ and offset by 𝑟. Pictorially this looks like,

Right, so we have separate sub-arrays as indexed from the initial array, what happens next? These various 𝑧𝑟 arrays
are fed to cuFFT yielding 𝑛 complex-to-complex transforms. These separate transforms now need to be combined
to form a single real-to-complex transform of the full initial size. An inconvenience of this structure is that 𝑧𝑟 is not
a contiguous set of input samples, but a strided array. While cuFFT does support both strided inputs and batched
transformations, we cannot batch over 𝑟 and over multiple spectra at the same time as it only supports a single batch
dimension with corresponding stride. We solve this by modifying the PFB kernel to reorder its output such that each
𝑧𝑟 is output contiguously. This can be done by shuffling some bits in the output index (because we assume powers of
two everywhere).

To see how the 𝑘 indexing works 𝑘 = 𝑝𝑚+ 𝑠 and is dealt with in a similar manner as above. Parameter 𝑚 = 8192 (in
this example), and 𝑝 has a range 0 to 𝑛 − 1 (i.e. 𝑝 = 0 to 𝑝 = 3 as 𝑛 = 4 in our example); and 𝑠 takes on the range 0
to 𝑚− 1 (i.e. 𝑠 = 0 to 𝑠 = 8191).

10.2. GPU Processing 31

katgpucbf, Release 0.1.dev290+gf385556

Looking at this practically,

When 𝑝 = 0

Inputs Index
pm + s k
0 · 8192 + 0 0
0 · 8192 + 1 1
0 · 8192 + 2 2
.
.
0 · 8192 + 8191 8191

This too can be extended to the other remaining arrays.

Viewing the above tables it can be seen that the full range of outputs are indexed in batches of 𝑚 = 8192 outputs, but,
this is not yet the final output and are merely the outputs as provided by inputting the respective 𝑧𝑟 arrays into cuFFT
(all we have done at this point is computed 𝑍𝑟 using cuFFT). As a useful flashback, we are aiming to compute 𝑍𝑘 from
𝑧 (made up from smaller arrays 𝑧𝑟) with the intention of computing the 𝑈 and 𝑉 terms. Why? So that with 𝑈 and 𝑉
we can compute 𝑋𝑘 which is our desired final output.

The aim is to compute 𝑍𝑘 so putting it more formally we have

𝑍𝑘 = 𝑍𝑝𝑚+𝑠 =

𝑚𝑛−1∑︁
𝑖=0

𝑒
−2𝜋𝑗
𝑚𝑛 ·𝑖𝑘𝑧𝑖

=

𝑚−1∑︁
𝑞=0

𝑛−1∑︁
𝑟=0

𝑒
−2𝜋𝑗
𝑚𝑛 (𝑞𝑛+𝑟)(𝑝𝑚+𝑠)𝑧𝑞𝑛+𝑟

=

𝑛−1∑︁
𝑟=0

𝑒
−2𝜋𝑗

𝑛 ·𝑟𝑝

[︃
𝑒

−2𝜋𝑗
𝑚𝑛 ·𝑟𝑠

𝑚−1∑︁
𝑞=0

𝑒
−2𝜋𝑗

𝑚 ·𝑞𝑠𝑧𝑟𝑞

]︃

=

𝑛−1∑︁
𝑟=0

𝑒
−2𝜋𝑗

𝑛 ·𝑟𝑝
[︁
𝑒

−2𝜋𝑗
𝑚𝑛 ·𝑟𝑠𝑍𝑟

𝑠

]︁
.

The whole expression is a Fourier transform of the expression in brackets (the exponential inside the bracket is the
so-called “twiddle factor”).

In the post-processing kernel, each work-item computes the results for a single 𝑠 and for all 𝑝. To compute the real-to-
complex transformation, it also needs to compute

𝑍−𝑘 = 𝑍−𝑝𝑚−𝑠 =

𝑛−1∑︁
𝑟=0

𝑒
−2𝜋𝑗

𝑛 ·𝑟𝑝
[︁
𝑒

−2𝜋𝑗
𝑚𝑛 ·𝑟𝑠𝑍𝑟

−𝑠

]︁
.

Right, lets wrap things up. We have 𝑍𝑘 (i.e. 𝑍) and 𝑍−𝑘 (i.e. 𝑍 ′) which is what we set out to compute. This then
means we can compute 𝑋𝑘 and 𝑋𝑁−𝑘 as stated earlier from 𝑈 = 𝑍+𝑍′

2 and 𝑉 = 𝑍−𝑍′

2𝑗 (with appropriate twiddle
factor) to combine the various outputs from cuFFT and get the final desired output 𝑋𝑘.

We also wish to keep a tally of saturated (clipped) values, which requires that each output value is considered exactly
once. This is made more complicated by the process that computes 𝑋𝑘 and 𝑋𝑁−𝑘 jointly. With 𝑘 = 𝑝𝑚 + 𝑠, we
consider all 0 ≤ 𝑝 < 𝑛 and 0 ≤ 𝑠 ≤ 𝑚

2 , and discard 𝑋𝑁−𝑘 when 𝑠 = 0 or 𝑠 = 𝑚
2 as these are duplicated cases.

32 Chapter 10. F-Engine Design

katgpucbf, Release 0.1.dev290+gf385556

10.2.4 Postprocessing

The remaining steps are to

1. Compute the real Fourier transform from several complex-to-complex transforms (see the previous section).

2. Apply gains and fine delays.

3. Do a partial transpose, so that spectra-per-heap spectra are stored contiguously for each channel (the Nyquist
frequencies are also discarded at this point).

4. Convert to integer.

5. Where the output bits per sample is not a whole number of bytes, do the necessary bit-packing.

6. Interleave the polarisations.

These are all combined into a single kernel to minimise memory traffic. The katsdpsigproc package provides a template
for transpositions, and the other operations are all straightforward. While C++ doesn’t have a convert with saturation
function, we can access the CUDA functionality through inline PTX assembly (OpenCL C has an equivalent function).

Fine delays and the twiddle factor for the Cooley-Tukey transformation are computed using the sincospi function,
which saves both a multiplication by 𝜋 and a range reduction.

The gains, fine delays and phases need to be made available to the kernel. We found that transferring them through the
usual CUDA copy mechanism leads to sub-optimal scheduling, because these (small) transfers could end up queued
behind the much larger transfers of digitiser samples. Instead, we use vkgdr to allow the CPU to write directly to the
GPU buffers. The buffers are replicated per output item, so that it is possible for the CPU to be updating the values for
one output item while the GPU is computing on another.

10.2.5 Coarse delays

One of the more challenging aspects of the processing design was the handling of delays. In the end we chose to exploit
the fact that the expected delay rates are very small, typically leading to at most one coarse delay change per chunk.
We thus break up each chunk into sections where the coarse delay is constant for both polarisations.

Our approach is based on inverting the delay model: output timestamps are regularly spaced, and for each output
spectrum, determine the sample in the input that will be delayed until that time (to the nearest sample). We then take
a contiguous range of input samples starting from that point to use in the PFB. Unlike the MeerKAT FPGA F-engine,
this means that every output spectrum has a common delay for all samples. There will also likely be differences from
the MeerKAT F-engine when there are large discontinuities in the delay model, as the inversion becomes ambiguous.

The polarisations are allowed to have independent delay models. To accommodate different coarse delays, the space
at the end of each chunk (to which the start of the following chunk is copied to accommodate the PFB footprint)
is expanded, to ensure that as long as one polarisation’s input starts within the chunk proper, both can be serviced
from the extended chunk. This involves a tradeoff where support for larger differential delays requires more memory
and more bandwidth. The dominant terms of the delay are shared between polarisations, and the differential delay is
expected to be extremely small (tens of nanoseconds), so this has minimal impact.

The GPU processing is split into a front-end and a back-end: the front-end consists of just the PFB FIR, while the
backend consists of FFT and post-processing. Because changes in delay affect the ratio of input samples to output
spectra, the front-end and back-end may run at different cadences. We run the front-end until we’ve generated enough
spectra to fill a back-end buffer, then run the back-end and push the resulting spectra into a queue for transmission. It’s
important to (as far as possible) always run the back-end on the same amount of data, because cuFFT bakes the number
of FFTs into its plan.

10.2. GPU Processing 33

https://github.com/ska-sa/vkgdr

katgpucbf, Release 0.1.dev290+gf385556

10.2.6 Digitiser sample statistics

The PFB kernel also computes the average power of the incoming signal. Ideally that would be done by a separate kernel
that processed each incoming sample exactly once. However, doing so would be expensive in memory bandwidth.
Instead, we update statistics as samples are loaded for PFB calculations.

Some care is needed to avoid double-counting due to overlapping PFB windows. The simplest way to add this to the
existing code is that for each output spectrum, we include the last 2 × channels samples from the PFB window. In
steady state operation and in the absence of coarse delay changes, this will count each sample exactly once. Coarse
delay changes will cause some samples to be counted twice or not at all, but these are sufficiently rare that it is not
likely to affect the statistics.

Average power is updated at the granularity of output chunks. The PFB kernel updates a total power accumulator
stored in the output item. This is performed using (64-bit) integer arithmetic, as this avoids the pitfalls of floating-point
precision when accumulating a large number of samples.

10.3 Network transmit

The current transmit system is quite simple. By default a single spead2 stream is created, with one substream per
multicast destination. For each output chunk, memory together with a set of heaps is created in advance. The heaps
are carefully constructed so that they reference numpy arrays (including for the timestamps), rather than copying data
into spead2. This allows heaps to be recycled for new data without having to create new heap objects.

If the traffic for a single engine exceeds the bandwidth of the network interface, it is necessary to distribute it over
multiple interfaces. In this case, several spead2 streams are created (one per interface). Each of them has a substream for
every multicast destination, but they are not all used (the duplication simplifies indexing). When heaps are transmitted,
a stream is selected for each heap to balance the load. Descriptors and stop heaps are just sent through the first stream
for simplicity. This scheme assumes that all the interfaces are connected to the same network and hence it does not
matter which interface is used other than for load balancing.

10.3.1 PeerDirect

When GPUDirect RDMA / PeerDirect is used, the mechanism is altered slightly to eliminate the copy from the GPU
to the host:

1. Chunks no longer own their memory. Instead, they use CUDA device pointers referencing the memory stored in
an OutItem. As a result, Chunks and OutItems are tied tightly together (each OutItem holds a reference to the
corresponding Chunk), instead of existing on separate queues.

2. Instead of OutItems being returned to the free queue once the data has been copied to the host, they are only
returned after the data they hold has been fully transmitted.

3. More OutItems are allocated to compensate for the increased time required before an OutItem can be reused.
This has not yet been tuned.

There may be opportunities for further optimisation, in the sense of reducing the amount of memory that is not actively
in use, because some parts of an OutItem can be recycled sooner than others. Since GPUs that support this feature tend
to have large amounts of memory, this is not seen as a priority.

34 Chapter 10. F-Engine Design

katgpucbf, Release 0.1.dev290+gf385556

10.3.2 Output Heap Payload Composition

In the case of an 8192-channel array with 64 X-engines, each heap contains 8192/64 = 128 channels. By default, there
are 256 time samples per channel. Each sample is dual-pol complex 8-bit data for a combined sample width of 32 bits
or 4 bytes.

The heap payload size in this example is equal to

channels_per_heap * samples_per_channel * complex_sample_size = 128 * 256 * 4 = 131,072 = 128 KiB.

The payload size defaults to a power of 2, so that packet boundaries in a heap align with channel boundaries. This isn’t
important for the spead2 receiver used in the X-engine, but it may be useful for potential third party consumers of
F-engine data.

10.4 Missing data handling

Inevitably some input data will be lost and this needs to be handled. The approach taken is that any output heap which
is affected by data loss is instead not transmitted. All the processing prior to transmission happens as normal, just using
bogus data (typically whatever was in the chunk from the previous time it was used), as this is simpler than trying to
make vectorised code skip over the missing data.

To track the missing data, a series of “present” boolean arrays passes down the pipeline alongside the data. The first
such array is populated by spead2. From there a number of transformations occur:

1. When copying the head of one chain to append it to the tail of the previous one, the same is done with the presence
flags.

2. A prefix sum (see numpy.cumsum()) is computed over the flags of the chunk. This allows the number of good
packets in any interval to be computed quickly.

3. For each output spectrum, the corresponding interval of input heaps is computed (per polarisation) to determine
whether any are missing, to produce per-spectrum presence flags.

4. When an output chunk is ready to be sent, the per-spectrum flags are reduced to per-frame flags.

10.5 Narrowband

Narrowband outputs are those in which only a portion of the digitised bandwidth is channelised and output. Typically
they have narrower channel widths. The overall approach is as follows:

1. The signal is multiplied (mixed) by a complex tone of the form 𝑒2𝜋𝑗𝑓𝑡, to effect a shift in the frequency of the
signal. The centre of the desired band is placed at the DC frequency.

2. The signal is convolved with a low-pass filter. This suppresses most of the unwanted parts of the band, to the
extent possible with a FIR filter.

3. The signal is subsampled (every Nth sample is retained), reducing the data rate. The low-pass filter above limits
aliasing. At this stage, twice as much bandwidth as desired is retained.

4. The rest of the pipeline proceeds largely as before, but using double the final channel count (since the bandwidth
is also doubled, the channel width is as desired). The input is now complex rather than real, so the Fourier
transform is a complex-to-complex rather than real-to-complex transform.

5. Half the channels (the outer half) are discarded.

Note: To avoid confusion, the “subsampling factor” is the ratio of original to retained samples in the subsampling
step, while the “decimation factor” is the factor by which the bandwidth is reduced. Because the mixing turns a real

10.4. Missing data handling 35

https://spead2.readthedocs.io/en/latest/py.html#module-spead2
https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html#numpy.cumsum

katgpucbf, Release 0.1.dev290+gf385556

signal into a complex signal, the subsampling factor is twice the decimation factor in step 3 (but equal to the overall
decimation factor).

The decimation is thus achieved by a combination of time-domain (steps 2 and 3) and frequency domain (step 5)
techniques. This has better computational efficiency than a purely frequency-domain approach (which would require
the PFB to be run on the full bandwidth), while mitigating many of the filter design problems inherent in a purely
time-domain approach (the roll-off of the FIR filter can be hidden in the discarded outer channels).

The first three steps are implemented by a “digital down-conversion” (“DDC”) kernel. This is applied to each input
chunk, after copying the head of the following chunk to the tail of the chunk. This does lead to redundant down-
conversion in the overlap region, and could potentially be optimised.

The PFB FIR kernel has alternations because it needs to consume single-precision complex inputs rather than packed
integers. However, the real and imaginary components are independent, and so the input is treated internally as if
it contained just real values, with an adjustment to correctly index the weights. The postprocessing kernel also has
adjustments, as the corrections for a real-to-complex Fourier transform are no longer required, and the outer channels
must be discarded.

An incidental difference between the wideband and narrowband modes is that in wideband, the DC frequency of the
Fourier transform corresponds to the lowest on-sky frequency, while for wideband it corresponds to the centre on-sky
frequency. This difference is also handled in the postprocessing kernel. Internally, channels are numbered according
to the Fourier transform (0 being the DC channel), but different calculations are used in wideband versus narrowband
mode to swap the two halves of the band (and to discard half the channels) when

• indexing the gains array;

• indexing the output array;

• computing the phase from the fine delay and channel.

10.5.1 Down-conversion kernel

For efficiency, the first three operations above are implemented in the same kernel. In particular, the filtered samples
that would be removed by subsampling are never actually computed. Unlike the memory-bound PFB kernel, this kernel
is at the boundary between being memory-bound and compute-bound (depending on the number of taps). The design
thus needs a more efficient approach to decoding the packed samples.

Each work-item is responsible for completely computing 𝐶 consecutive output values (𝐶 is a tuning parameter), which
it does concurrently. We can describe the operation with the equation

𝑦𝑏+𝑖 =

𝑇−1∑︁
𝑘=0

𝑥𝑆(𝑏+𝑖)+𝑘 · ℎ𝑘 · 𝑒2𝜋𝑗𝑓 [𝑆(𝑏+𝑖)+𝑘]

where

• 𝑥 is the input

• 𝑦 is the output

• ℎ contains the weights

• 𝑆 is the subsampling factor

• 𝑇 is the number of taps

• 𝑏 is the first of the 𝐶 outputs to produce

• 0 ≤ 𝑖 < 𝐶 is the index into the 𝐶 outputs to produce; and

• 𝑓 is the frequency of the mixer signal, in cycles per digitiser sample.

36 Chapter 10. F-Engine Design

katgpucbf, Release 0.1.dev290+gf385556

The first simplification we make is to pre-compute the weights with the mixer (on the CPU). Let 𝑧𝑘 = ℎ𝑘𝑒
2𝜋𝑗𝑓𝑘. Then

the equation becomes

𝑦𝑏+𝑖 = 𝑒2𝜋𝑗𝑓𝑆(𝑏+𝑖)
𝑇−1∑︁
𝑘=0

𝑥𝑆(𝑏+𝑖)+𝑘 · 𝑧𝑘.

For now we’ll focus on just the summation, and deal with the exponential later. For simplicity, assume 𝑇 is a multiple
of 𝑆 (although the implementation does not require it) and let 𝑊 = 𝑇

𝑆 . Then we can write 𝑘 as 𝑝𝑆+ 𝑞 and rewrite this
equation as

𝑦𝑏+𝑖 = 𝑒2𝜋𝑗𝑓𝑆(𝑏+𝑖)
𝑊−1∑︁
𝑝=0

𝑆−1∑︁
𝑞=0

𝑥𝑆(𝑏+𝑖+𝑝)+𝑞 · 𝑧𝑝𝑆+𝑞.

The kernel iterates first over 𝑞, then 𝑝, then 𝑖. A separate accumulator variable is kept for each value of 𝑖. For a given
𝑞, we only need 𝐶 +𝑊 − 1 different values of 𝑥 (since that’s the range of 𝑖 + 𝑝). We decode them all into an array
before iterating over 𝑞 and 𝑖 to update the accumulators.

When 𝑞 is advanced, we need to decode a new set of 𝐶 + 𝑊 − 1 samples. These immediately follow the previous
set. We take advantage of this: in many cases, the new sample occupies (at least partially) the same 32-bit word from
which we obtained the previous sample. By keeping those 𝐶 +𝑊 − 1 words around, we get a head-start on decoding
the new sample.

Choosing 𝐶 is a trade-off. Larger values of 𝐶 clearly increase register pressure. However they reduce the number
of loads required: each work item decodes (𝐶 + 𝑊 − 1)𝑆 samples to produce 𝐶 outputs, which is an average of
𝑆 + (𝑊−1)𝑆

𝐶 . To further reduce the global memory traffic, all the samples and weights are copied to local memory at
the start of the kernel. The results are also first transposed in local memory before being written back to global memory,
to improve the global memory access pattern.

The implementation relies heavily on loop unrolling. Provided that 𝐶𝑆 samples occupy a whole number of 32-bit
words (so that different work-items are loading samples from the same bit positions within a word), all the conditional
logic involved in decoding the samples can be evaluated at compile-time.

Mixer signal

Care needs to be taken with the precision of the argument to the mixer signal. Simply evaluating the sine and cosine
of 2𝜋𝑓𝑡 when 𝑡 is large can lead to a catastrophic loss of precision, as the product 𝑓𝑡 will have a large integer part and
leave few bits for the fractional part. Even passing 𝑓 in single precision can lead to large errors.

To avoid these problems, fixed-point computations are used. Phase is represented as a fractional number of cycles,
scaled by 232 and stored in a 32-bit integer. When performing arithmetic on values encoded this way, the values may
overflow and wrap. The high bits that are lost represent complete cycles, and so have no effect on phase.

10.5.2 Filter design

Discarding half the channels after channelisation allows for a lot of freedom in the design of the DDC FIR filter: the
discarded channels, as well as their aliases, can have an arbitrary response. This allows for a gradual transition from
passband to stopband. We use scipy.signal.remez() to produce a filter that is as close as possible to 1 in the
passband and 0 in the stopband. A weighting factor (which the user can override) balances the priority of the passband
(ripple) and stopband (alias suppression).

The filter performance is slightly improved by noting that the discarded channels have multiple aliases, and the filter
response in those aliases is also irrelevant. We thus use scipy.signal.remez() to only optimise the response to
those channels that alias into the output.

10.5. Narrowband 37

katgpucbf, Release 0.1.dev290+gf385556

10.5.3 Delays

Coarse delay is (as for wideband) implemented using an input offset to the PFB FIR kernel. This means that the
resolution of coarse delay is coarser than for wideband (by the subsampling factor). This choice is driven by the access
patterns in the various kernels: the DDC kernel depends on knowing at compile time where each packed sample starts
within a word, and hence is not amenable to single-sample input offsets.

10.5.4 Multiple outputs

A standard use case for MeerKAT is to produce wideband and narrowband outputs from a single input stream. To make
this efficient, a single engine can support multiple output streams, and the input is only transferred to the GPU once.

The code is split into an Engine class that handles common input tasks, and a Pipeline class that handles per-output
processing and transmission. Copying the head of each chunk to the tail of the previous chunk is handled by the Engine,
after which the previous chunk is pushed to the input queue of each Pipeline. The chunks have reference counts to help
determine when all pipelines are done with them.

10.5.5 Input statistics

The wideband PFB FIR kernel also computes statistics on the input digitiser stream (just RMS power, at the time of
writing). Since all the outputs are produced from the same input, we do not attempt to duplicate this calculation for
narrowband.

An engine with only narrowband outputs will thus be lacking these statistics. Calculating the statistics in that case
would require extending the DDC kernel to compute the same statistics.

38 Chapter 10. F-Engine Design

CHAPTER

ELEVEN

XB-ENGINE DESIGN

11.1 Correlation

11.1.1 Implementation details of correlation kernel

The correlation kernel of the XB-engine is implemented using a modified version of code originally written by John
Romein of ASTRON (which can be accessed here).

For an overview of the tensor-core correlator compute kernel, see the GTC presentation. This section gets into the low-
level details of the implementation. Familiarity with CUDA (including warp matrix multiplies) as well as the function
of a correlator are assumed.

Complex multiplications

The tensor cores can only perform calculations on real numbers. The correlation kernel takes complex numbers as
adjacent pairs of real and imaginary parts, and constructs matrices in a way that allows complex multiplications to be
performed. The GTC presentation shows diagrams of this, so only a brief explanation will be given.

Consider a correlation product 𝐴 × 𝐵𝐻 . The real part of (𝑎𝑟 + 𝑗𝑎𝑖)(𝑏𝑟 + 𝑗𝑏𝑖) is 𝑎𝑟𝑏𝑟 + 𝑎𝑖𝑏𝑖, so simply by placing
the real and imaginary parts in alternate columns of 𝐴 and 𝐵, each dot product between rows will give the desired real
part.

The imaginary part is 𝑎𝑖𝑏𝑟 − 𝑎𝑟𝑏𝑖, so we could construct a second matrix 𝐵′ containing (−𝑏𝑖, 𝑏𝑟) in each pair of
adjacent real entries (instead of (𝑏𝑟, 𝑏𝑖)), and then the product would give the imaginary part. If instead of using two
separate matrices, we interleave the rows of 𝐵 and 𝐵′, the resulting product will interleave the original products (by
column) and hence place the real and imaginary components together again.

In the code this transformation is implemented by conj_perm(). It uses some bit manipulations to perform the calcu-
lation on a 32-bit integer that potentially has multiple samples. This code assumes a little-endian architecture, which
is all that CUDA supports. Let’s consider the code for NR_BITS of 8:

__byte_perm(v, 0x00FF00FF - (v & 0xFF00FF00), 0x2705);

In this case v contains two complex numbers. The mask selects the imaginary components. These are effectively
subtracted from 0 to negate them; the left-hand side of the subtraction is 0x00FF00FF rather than 0 so that the lower
component doesn’t cause a carry that affects the higher component. The other two bytes of the result are not relevant.
Next, __byte_perm() selects the four desired bytes in the appropriate order.

It should be noted that this transformation will map -128 to itself rather than +128, because +128 cannot be represented
in a two’s-complement int8. The caller is responsible for ensuring that this input value is not used.

39

https://git.astron.nl/RD/tensor-core-correlator/-/blob/83abdcc/libtcc/TCCorrelator.cu
https://developer.nvidia.com/gtc/2019/video/s9306
https://developer.nvidia.com/gtc/2019/video/s9306

katgpucbf, Release 0.1.dev290+gf385556

Parameters and constants

NR_BITS specifies the type of the incoming samples:

• 4 means each byte contains a packed 4-bit real and 4-bit imaginary.

• 8 means the real and imaginary components are signed bytes.

• 16 means half-precision float.

NR_SAMPLES_PER_CHANNEL is the number of samples in time processed in a single call to the kernel. These are divided
into groups of NR_TIMES_PER_BLOCK, which is the number loaded into shared memory at a time before computing
with them. Changing NR_TIMES_PER_BLOCK would require substantial changes to the loading code: the fetches are
hard-coded to use a certain number of bits of the thread ID to index this dimension. Increasing it significantly (e.g., to
match the 256 that is native to MeerKAT) would probably require too much shared memory.

NR_RECEIVERS_PER_BLOCK refers to the size of the subsets of antenna data in the input matrix which will be corre-
lated per thread block. It has three possible values (32, 48 and 64) which correspond to processing 32×32, 48×48 or
64×32 (not 64×64) regions of the correlation matrix. The kernel uses NR_RECEIVERS_PER_BLOCK_X for the second
dimension.

NR_CHANNELS is the number of channels over which to correlate, but there seems to be little need for this to be baked
into the kernel. It only forms the outermost dimension of the inputs and outputs, and the Y axis of the thread grid, and
could just as easily be dynamic.

NR_RECEIVERS_PER_TCM_X and NR_RECEIVERS_PER_TCM_Y are the number of (dual-pol) receivers per warp matrix
multiply. Keeping in mind that the “Y” receiver corresponds to rows (and to aSamples temporary storage, with “X”
corresponding to bSamples), this is 8×4 (8×2 for 4-bit samples). With dual-pol receivers that equates to 16×8 inputs.
The reason it is not 16×16 (to match the matrix shape supported by the tensor cores) is the expansion of the B matrix
for complex multiplication as described above.

In doCorrelateRectangle(), nrFragmentsX and nrFragmentsY indicate the number of “fragments” (tensor-core
matrices) that the warp (not the thread block) is responsible along each dimension.

Thread indexing

There is a hard-coded value of 4 warps per block, arranged as 32×2×2. The first axis simply determines the position
within a warp. The other two axes are used for different purposes in different parts of the code. Most typically, they
subdivide the output block into quadrants (so for example a 64×32 output block is divided into four 32×16 output
blocks, with one warp responsible for computing each). In loading code, the threadIdx is flattened into a 1D index
(tid).

The thread grid is 2D. The y axis indicates the channel, while the x axis selects an output block within the output
triangle. Some trickery with square roots is used to perform this mapping.

When NR_RECEIVERS_PER_BLOCK is 32 or 48, the output space is dealt with in square blocks, in
doCorrelateRectangle(). The correlation matrix is conjugate symmetric, so this involves computing some redun-
dant elements, which are discarded as part of storeVisibilities(). When it is 64, things get more complicated:
certain blocks are processed with doCorrelateTriangle(), which is optimised for blocks that lie on the main di-
agonal. The figure above illustrates the arrangement for a 192-antenna array. The numbers in white boxes are the
block IDs (blockIdx.x). Each green block is processed with doCorrelateRectangle(); it is shown divided into
four quadrants (corresponding to the warps) and further subdivided into the fragments computed by each warp. The
red/blue blocks are processed with doCorrelateTriangle(). The three blue regions are processed using warps 1-3
(a lookup table indicates the starting position), while the three red areas in each triangle are handled by warp 0.

When NR_BITS is 4 the situation is very similar, but the fragments are 8×2 instead of 8×4.

40 Chapter 11. XB-engine design

katgpucbf, Release 0.1.dev290+gf385556

1 2 4 5

6 7

0

3

8

Y

X

64

32

32

16

8

4

Fig. 1: Block, warp and fragment layout when NR_RECEIVERS_PER_BLOCK is 64 and NR_BITS is 8 or 16.

11.1. Correlation 41

katgpucbf, Release 0.1.dev290+gf385556

Data loading

A batch of voltage samples is loaded into shared memory, then used from there. Since each warp is computing multiple
output fragments, each voltage is used by multiple matrix multiplies, and so caching them in shared memory reduces
global memory traffic. The shared memory is also double-buffered, which is presumably to increase instruction-level
parallelism and reduce the number of synchronisations required.

Rather than perform loads using the natural type of the samples, they are performed using wide types like int4,
presumably to make more efficient use of the memory type, and type-casts pointers to access the raw memory. It
should be noted that this sort of type-punning is undefined behaviour in C++, but there doesn’t seem to be a safer
alternative (memcpy is safe but it works one byte at a time, which destroyed performance).

Loading is implemented using the FetchData class. At construction time it takes thread-specific offsets to the receiver
(antenna), polarisation and time. The load() member functions takes base channel, time and receiver that are uniform
across the block. If the specific element to access is outside the bounds, the data is not loaded and left as zero.

Asynchronous loading

Note: The asynchronous loading support has been removed in the katgpucbf fork, as it was not really compatible with
the axis reordering. This section is left as a reference should it be brought back in future.

When there is support in hardware (Compute Capability 8.0 or later, i.e., Ampere) and a new enough CUDA version, an
asynchronous memory copy is used for extra latency hiding (or possibly to reduce register pressure). It’s implemented
using an experimental (and deprecated) version of the API; for reference one needs to read the 11.1 CUDA programming
guide rather than the latest version.

The READ_AHEAD macro is slightly confusing. Let’s assume a large enough NR_SAMPLES_PER_CHANNEL that
READ_AHEAD is 2 and NR_SHARED_BUFFERS is 4. Then the following can all be occurring simultaneously:

1. Reading from shared buffer i to do the computations.

2. Asynchronous copies to shared buffers i + 1 to i + 3, inclusive (note that accounts for 3 buffers, not 2).

Within a single thread there can only be two async copies outstanding while doing the computations, because before
starting computation on a buffer it waits for the copy targeting that buffer to complete. But because there is no call to
__syncthreads() between the end of computation and the scheduling of the following copy, the scenario above can
occur overall, with different threads in different parts of the loop. This explains why 4 buffers are needed.

Result storage

The result storage is particularly complicated in an attempt to optimise the process. CUDA says that the fragment
type has implementation-defined memory layout, and the individual matrix elements can only be portably read by
using store_matrix_sync() to write the results to shared or global memory. The memory layouts supported by this
function don’t correspond to the packed triangular shape the kernel wants, so some extra steps are required.

For a set of recognised architectures, the elements of the fragment class are read directly, using knowledge of the
architecture-specific memory layout. In the fallback case (where PORTABLE is defined), the fragment is written to
shared-memory scratch space then read back to extract the elements.

The upstream code is designed to do all the accumulation inside the kernel, by passing in all the data for the entire
dump. While this is efficient (only writing results to global memory once), it would limit the dump period based on the
available memory. In katgpucbf, the code has been modified so that results are added to the existing values in global
memory.

42 Chapter 11. XB-engine design

https://gist.github.com/shafik/848ae25ee209f698763cffee272a58f8

katgpucbf, Release 0.1.dev290+gf385556

11.1.2 Accumulations, Dumps and Output Data

The input data is accumulated before being output. For every output heap, multiple input heaps are received.

A heap from a single F-Engine consists of a set number of spectra, referred to as spectra_per_heap, where the spectra
are time samples. Each of these time samples is part of a different spectrum, meaning that the timestamp difference per
sample is equal to the value of --samples-between-spectra. The timestamp difference between two consecutive
heaps from the same F-Engine is equal to:

heap_timestamp_step = spectra_per_heap * samples_between_spectra.

The value of spectra_per_heap is not set explicitly on the command line, but rather inferred from the
--jones-per-batch argument. The latter is the product of spectra_per_heap and the stream’s channel count
(and thus, the number of Jones vectors in an F-engine output batch).

A batch of heaps is a collection of heaps from different F-Engines with the same timestamp. A chunk consists of
multiple consecutive batches (the number is given by the option --heaps-per-fengine-per-chunk). Correlation
generally occurs on a chunk at a time, accumulating results. The correlation kernel is modified in several ways to
support this:

• The FetchData class splits the time index into a batch index and an offset within the batch, so that the rest of
the code can be oblivious to batches, and just work in time “blocks” (NR_TIMES_PER_BLOCK spectra).

• The various functions take a runtime range of blocks to process.

• To provide more parallelism (important when each engine is processing only a few channels), the grid has an
extra Z dimension. The time blocks to be processed are divided amongst the values of blockIdx.z. There
is a trade-off here: one wants to serially accumulate over as many blocks as possible to reduce the final global
memory traffic for writing back results. To avoid race conditions in accumulation, each value of blockIdx.z
uses a separate global-memory accumulator.

An accumulation period is called an accumulation and the data output from that accumulation is normally called a dump
— the terms are used interchangeably. Once all the data for a dump has been correlated, the separate accumulators are
added together (“reduced”) to produce a final result. This reduction process also converts from 64-bit to 32-bit integers,
saturating if necessary, and counts the number of saturated visibilities.

The number of batches to accumulate in an accumulation is equal to the --heap-accumulation-threshold flag.
The timestamp difference between successive dumps is therefore equal to:

timestamp_difference = spectra_per_heap * samples_between_spectra * heap_accumulation_threshold

The output heap timestamp is aligned to an integer multiple of timestamp_difference (equivalent to the current
SKARAB “auto-resync” logic). The total accumulation time is equal to:

accumulation_time_s = timestamp_difference * adc_sample_rate(Hz) seconds.

The output heap contains multiple packets and these packets are distributed over the entire accumulation_time_s interval
to reduce network burstiness. The default configuration in katgpucbf.xbgpu.main is for 0.5 second dumps when
using the MeerKAT 1712 MSps L-band digitisers.

The dump boundaries are aligned to whole batches, but may fall in the middle of a chunk. In this case, each invocation
of the correlation kernel will only process a subset of the batches in the chunk.

11.1. Correlation 43

katgpucbf, Release 0.1.dev290+gf385556

Output Heap Payload Composition

Each correlation product contains a real and imaginary sample (both 32-bit integer) for a combined size of 8 bytes
per baseline. The ordering of the correlation products is given in the xeng-stream-name-bls-ordering sensor in
the product controller, but can be calculated deterministically: get_baseline_index() indicates the ordering of the
baselines, and the four individual correlation products are always ordered aa, ba, ab, bb, where a and b can either
be vertical or horizontal polarisation (v or h), depending on the configuration of the instrument.

All the baselines for a single channel are grouped together contiguously in the heap, and each X-engine correlates a
contiguous subset of the entire spectrum. For example, in an 80-antenna, 8192-channel array with 64 X-engines, each
X-engine output heap contains 8192/64 = 128 channels.

The heap payload size in this example is equal to

channels_per_heap * correlation_products * complex_sample_size = 128 * 12960 * 8 = 13,271,040 bytes
or 12.656 MiB.

11.1.3 Missing Data Handling

As with fgpu, metadata indicating present or missing input heaps are passed down the pipeline alongside the data. If
some input data is missing, processing is performed as normal. Unlike fgpu which suppresses transmissions for which
some input data was missing, xbgpu will replace affected baselines with a “magic number” of (-2**31, 1), so that
unaffected baselines can still be transmitted, but the receiver will know that those baselines are invalid. If a dump is
affected by missing data on all antennas, it will still be transmitted but will contain only the magic value and no useful
data.

11.2 Beamforming

11.2.1 GPU kernel

For the low number of beams required for MeerKAT (8 single-pol beams), the beamforming operation is entirely
limited by the GPU DRAM bandwidth. There is thus no benefit to using tensor cores, and potentially significant
downsides (implementation complexity and reduced accuracy for steering coefficients). The kernel thus uses standard
single-precision floating-point operations, and is written to maximise bandwidth usage.

The beamforming operation consists of two phases: coefficient generation and coefficient application. To minimise
use of system memory, the coefficients are generated on the fly in the same kernel, rather than computed in a separate
kernel and communicated through global memory. This design allows for more dynamic coefficients in the future, such
as delays that are updated much more frequently according to a formula.

The external interface to the beamformer has four parameters per beam-antenna pair: a weight, a quantisation gain
(common to all antennas), a delay and a fringe-rate. All except the delay are combined by the CPU into a single
(complex) weight per beam-antenna pair, and the delay is scaled into a convenient unit for computing the phase slope.
The final coefficient applied to channel 𝑐, beam 𝑏, antenna 𝑎 is

𝑊𝑎𝑏𝑐 = 𝑤𝑎𝑏𝑒
𝑗𝜋𝑐𝑑𝑎𝑏

where 𝑤𝑎𝑏 and 𝑑𝑎𝑏 are the weight and delay values passed to the kernel.

Each workgroup of the kernel handles multiple spectra and all beams and antennas, but only a single channel. Con-
ceptually, the kernel first computes 𝑊𝑎𝑏𝑐 for all antennas and beams and stores it to local memory, then applies it to all
antennas and beams. Each input sample is loaded once before it is used for all beams. An accumulator is maintained for
each beam. Since each coefficient is used many times (the number depends on the work group size, which is a tuning
parameter, but 64-256 is reasonable) after it is computed, the cost for computing coefficients is amortised.

44 Chapter 11. XB-engine design

katgpucbf, Release 0.1.dev290+gf385556

In practice, this would cause local memory usage to scale without bound as the number of antennas increases. To keep
it bounded (for a fixed number of beams), the antennas are processed in batches, computing then applying 𝑊𝑎𝑏𝑐 for
each batch before starting the next batch. Larger batch sizes have two advantages:

1. The two phases in each batch need to be separated by a barrier to coordinate access to the shared memory. Larger
batches reduce the number of barriers.

2. If the batch size is small, the number of coefficients to compute is also small, and there is not enough work to
keep all the work items busy, making the coefficient computation less efficient.

Higher beam counts

The design above works well for small numbers of beams (up to about 64 single-pol beams), but the register usage
scales with the number of beams and eventually the registers spill to memory, causing very poor performance.

To handle more beams, the kernel batches over beams, just as it does over antennas. The beam batch loop becomes an
outer loop, with the rest of the kernel operating as before but only on a single batch.

This does mean that the inputs are loaded multiple times, but caches help significantly here, and the kernel tends to be
be more compute-bound in this domain.

Dithering

To improve linearity, a random value in the interval (-0.5, 0.5) is added to each component (real and imaginary) before
quantisation. These values are generated using curand, with its underlying XORWOW generator. It is designed for
parallel use, with each thread having the same seed but a different sequence parameter to curand_init(). This
minimises correlation between sequences generated by different threads. The sequence numbers are also chosen to be
distinct between the different engines, to avoid correlation between channels.

Floating-point rounding issues make it tricky to get a perfectly zero-mean distribution. While it is probably inconse-
quential, simply using curand_uniform(state) - 0.5f will not give zero mean. We solve this by mapping the 232
possible return values of curand() to the range (−231, 231) with zero represented twice, before scaling to convert to
a real value in (−0.5, 0.5). While this is still a deviation from uniformity, it does give a symmetric distribution.

11.2. Beamforming 45

https://docs.nvidia.com/cuda/curand/index.html

katgpucbf, Release 0.1.dev290+gf385556

46 Chapter 11. XB-engine design

CHAPTER

TWELVE

DEVELOPMENT ENVIRONMENT

12.1 Setting up a development environment

First, clone the repo from Github.

git clone git@github.com:ska-sa/katgpucbf.git

A setup script (dev-setup.sh) is included for your convenience to get going.

cd katgpucbf
source dev-setup.sh

The script will perform the following actions:

• Create a fresh Python virtual environment.

• Install all the requirements for running, developing and building this documentation.

• Install the katgpucbf package itself, in editable mode.

• Build this documentation.

• Install pre-commit to help with keeping things tidy.

Sourcing the script instead of executing it directly will keep your virtual environment active, so you can get going
straight away. Next time you want to work, navigate into the katgpucbf directory and source the virtual environment
directly:

source .venv/bin/activate

And you are ready to start developing with katgpucbf !

Tip: I don’t recommend using the dev-setup.sh for anything other than initial setup. If you run it again, the
requirements will be re-installed, and the module will be re-installed in editable mode. It’s unlikely that any of this will
be harmful in any way, but it will use up a few minutes. You probably won’t want to do that every time.

47

katgpucbf, Release 0.1.dev290+gf385556

12.2 Pre-commit

katgpucbf is configured with pre-commit for auto-formatting Python code. Pre-commit runs whenever anything is
committed to the repository.

For more detailed information, please consult the pre-commit documentation. The installation and initialisation of the
pre-commit flow is handled in dev-setup.sh.

12.2.1 Configuration Files

This repo contains the following configuration files for the pre-commit flow to monitor Python development.

• .pre-commit-config.yaml for pre-commit specifies which git hooks will be run before committing to the
repo.

• pyproject.toml dictates the configuration of utilities such as black and isort.

• .flake8 for flake8, a tool for enforcing PEP 8-based style guide for Python.

• .pydocstyle.ini for pydocstyle, a tool for enforcing PEP 257-based docstring style guides for Python.

• mypy.ini file for mypy, a static type checker (or lint-like tool) for type annotations in the Python code - according
to PEP 484 and PEP 526 notation.

12.2.2 Installation Prerequisites

Although black, flake8, pydocstyle and mypy are used, the only prerequisite is the pre-commit Python library. That is,
the YAML configuration file is set up so that when the pre-commit hooks are installed, all dependencies are automati-
cally installed. (Note, they won’t be available to you in your Python environment, they will be used only by pre-commit.
If you want to use them separately, you will need to install them separately with pip.)

12.3 Light-weight installation

There are a few cases where it is unnecessary (and inconvenient) to install CUDA, such as for building the documenta-
tion or launching a correlator on a remote system. If one does not use dev-setup.sh but installs manually (in a virtual
environment) using pip install -e ., then only a subset of dependencies are installed. There are also some op-
tional extras that can be installed, such as pip install -e ".[doc]" to install necessary dependencies for building
the documentation. Refer to setup.cfg to see what extras are available.

This is not recommended for day-to-day development, because it will install whatever is the latest version at the time,
rather than the known-good versions pinned in requirements.txt.

12.4 Boiler-plate files

The module contains the following boiler-plate files:

• Dockerfile for generating repeatable container images which are capable of running this package.

• Jenkinsfile for a Jenkins Continuous Integration (CI) server to run unit tests automatically. Comments in the
file document hardware requirements.

• requirements.in and requirements-dev.in specify the Python prerequisites for running and developing
with this package respectively. They are used as inputs to pip-compile.

48 Chapter 12. Development Environment

https://pre-commit.com/
https://pre-commit.com/
https://black.readthedocs.io/en/stable/getting_started.html
https://pycqa.github.io/isort/
https://flake8.pycqa.org/en/latest/user/index.html
https://peps.python.org/pep-0008/
https://www.pydocstyle.org/en/stable/usage.html
https://peps.python.org/pep-0257/
https://mypy.readthedocs.io/en/stable/getting_started.html
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://black.readthedocs.io/en/stable/getting_started.html
https://flake8.pycqa.org/en/latest/user/index.html
https://www.pydocstyle.org/en/stable/usage.html
https://mypy.readthedocs.io/en/stable/getting_started.html
https://pip-tools.readthedocs.io/en/latest/#without-setup-py

katgpucbf, Release 0.1.dev290+gf385556

• requirements.txt and requirements-dev.txt list complete pinned requirements, to ensure repeatable op-
eration. These are the output of the pip-compile process mentioned above. These should be passed to pip
installwith the -r flag to install the requirements either to run or develop. Development requires an additional
set of packages which are not required for users to run the software (such as pytest). Note that developers should
install both sets of requirements, not just the development ones.

• setup.cfg and setup.py allow setuptools to install this package.

• pyproject.toml is a standard file included with many Python projects. It is used to store some configuration for
pre-commit (as described above), some configuration options for pytest, and other configuration as described
here.

12.5 Preparing to raise a Pull Request

12.5.1 Pre-commit compliance

Contributors who prefer to develop without pre-commit enabled will be required to ensure that any submissions pass
all the checks described here before they can be accepted and merged.

No judgement, we know pre-commit can be annoying if you’re not used to it. This is in place in order to keep the
code-base consistent so we can focus on the work at hand - rather than maintaining code readability and appearance.

12.5.2 Module documentation updates

katgpucbf holds documentation within its code-base. sphinx-apidoc provides a manner to generate module docu-
mentation as reStructuredText. If you, the developer, add or remove a module or file, execute the full sphinx-apidoc
command below to regenerate the module documentation with your updates. The incantation below is run from the
root katgpucbf directory.

sphinx-apidoc -efo doc/ src/

Note: The above command will likely generate a modules.rst file, which is not necessary to commit.

12.5. Preparing to raise a Pull Request 49

https://setuptools.pypa.io/en/stable/setuptools.html
https://docs.pytest.org/en/stable/index.html#module-pytest
https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/
https://www.sphinx-doc.org/en/master/index.html

katgpucbf, Release 0.1.dev290+gf385556

50 Chapter 12. Development Environment

CHAPTER

THIRTEEN

UNIT TESTING

Unit testing for this module is performed using pytest with support from pytest-asyncio. Unit test files should
follow pytest conventions. Additionally, coverage is used to give the developer insight into what the unit tests are
actually testing, and what code remains untested. Both of these packages are installed if the dev-setup.sh script is
used as described in Development Environment.

In order to run the tests, use the following command:

pytest

pytest reads its configuration from pyproject.toml. Also installed as part of this project’s requirements-dev.
txt are coverage and pytest-cov. As currently configured, running the unit tests as described above will execute a
subset of the parameterised tests (see the docstring for test/conftest.py). While every combination of parameters
won’t always be tested, each individual parameter will be tested at least once.

If you’d like an HTML test-coverage report (at the expense of a slightly longer time taken to run the test), execute
pytest with the --cov flag. This report can then be viewed by:

xdg-open htmlcov/index.html

Or, if you are developing on a remote server:

cd htmlcov && python -m http.server 8089

If you are using VSCode, the editor will prompt you to open the link in a browser, and automatically forward the port to
your localhost. If not, or if you’d prefer to do it the old-fashioned way, point a browser at port 8089 on the machine
that you are developing on.

The results will look something like this:

51

https://docs.pytest.org/en/stable/index.html#module-pytest
https://docs.pytest.org/en/stable/index.html#module-pytest
https://coverage.readthedocs.io/en/latest/api_module.html#module-coverage
https://docs.pytest.org/en/stable/index.html#module-pytest
https://coverage.readthedocs.io/en/latest/api_module.html#module-coverage

katgpucbf, Release 0.1.dev290+gf385556

The colour key is at the top of the page, but briefly, lines marked in green were executed by the tests, red were not.
Yellow lines indicate branches which were only partially covered, i.e. all possible ways to branch were not tested. In
the cases shown, it is because only expected values were passed to the function in question: the unit tests didn’t pass
invalid inputs in order to check that exceptions were raised appropriately.

On the right hand side, a context is shown for the lines that were executed, as shown in this image:

On the left side of the | is the static context - in this case showing information regarding the git commit that I ran the
test on. The right side shows the dynamic context - in this case, two different tests both executed this code during the
course of their run.

Note: coverage's “dynamic context” output is currently specified by pytest-cov to describe the test function which
executed the line of code in question. If desired, it can instead be specified in coverage’s configuration as described in
coverage’s documentation. This produces a slightly different output which conveys more or less similar information.

coverage's static context is more difficult to specify in a way that is useful. To generate the report above, I executed
the following command:

coverage run --context=$(git describe --tags --dirty --always)

This gives more useful information about exactly what code was run, and whether it’s committed or dirty. Unfortunately,
doing things this way you miss out on the features of pytest-cov. coverage supports specifying a static context using
either the command line (as shown) or via its configuration file, including reading of environment variables, but support
doesn’t extend to evaluating arbitrary shell expressions as is possible from the command line.

The package author suggests the use of a Makefile to generate an environment variable which the configuration can
then use in generating a static context. This strikes me as a good solution, but I am reluctant to include yet another
boiler-plate file in the repository, so I leave this to the discretion of the individual developer to make use of as desired.

Tip: Although having said that, the Makefile could also replace dev-setup.sh, allowing the developer to do something
like

make develop # to set up the environment
make test # to actually run the tests

52 Chapter 13. Unit Testing

https://coverage.readthedocs.io/en/latest/api_module.html#module-coverage
https://coverage.readthedocs.io/en/latest/contexts.html#dynamic-contexts
https://coverage.readthedocs.io/en/latest/api_module.html#module-coverage
https://coverage.readthedocs.io/en/latest/contexts.html#static-contexts
https://coverage.readthedocs.io/en/latest/api_module.html#module-coverage
https://github.com/nedbat/coveragepy/issues/1190

CHAPTER

FOURTEEN

DIGITISER PACKET SIMULATOR

The digitiser simulator (dsim for short) is a tool that provides the same heap format as the MeerKAT digitisers, with a
configurable payload.

14.1 Usage

The dsim process generates an arbitrary number of single-pol data streams. However, it only uses a single sending
thread, so in practice it does not scale well beyond two streams (a dual-pol antenna) for typical MeerKAT bandwidths.
Instead, one can use multiple instances. It also relies heavily on the ibverbs support in spead2 for performance at typical
MeerKAT bandwidths. It can nevertheless be used without it, but the bandwidth will most likely need to be reduced.
Pass --ibv to use the ibverbs acceleration.

When using multiple processes, it is usually necessary to synchronise them. The --sync-time specifies a time (in the
past) that will correspond to a zero timestamp. The synchronisation is accurate to about a millisecond, provided that
all threads are pinned to specific CPU cores and real-time scheduling is used to prevent other tasks from sharing those
cores. Streams sent by the same process are interleaved in a single transmit queue, so will be perfectly synchronised as
they leave the NIC (but could be desynchronised by a multi-path network).

By default the content of the signal is a sine wave with a fixed frequency. However, the signal is highly configurable
with the --signals option. A domain-specific language (DSL) allows continuous waves and Gaussian noise to be
combined with basic operators (see below). The signals to send can also be changed on the fly by issuing the ?signals
command over katcp.

14.2 Signal specification

14.2.1 Basics

To specify a signal, one writes an expression followed by a semi-colon. This provides the signal for a single polarisation,
so must be repeated for the number of single-pol streams. For example, the following1 generates a continuous wave on
the first polarisation and noise on the second polarisation:

cw(1.0, 1e9);
wgn(0.05);

Note that the semi-colons are required. A common mistake is to forget the final semi-colon. The following functions
are available:

1 While shown split over multiple lines, whitespace is not significant and it may be easier to place it all on one line.

53

katgpucbf, Release 0.1.dev290+gf385556

cw(amplitude, frequency)
Continuous wave with the given amplitude and frequency (in Hz). There is currently no way to directly control
phase, although the delay function below gives limited control.

comb(amplitude, frequency)
A comb of impulses, each one sample wide with the given amplitude. Note that if the frequency doesn’t corre-
spond to an integer number of samples, these will not be precisely periodic as each impulse time will be rounded
to the nearest sample.

wgn(std [, entropy])
White Gaussian noise with given standard deviation. Optionally, one may provide a non-negative integer seed in
entropy to give reproducible results.

delay(signal, delay)
Delay another signal expression by delay samples. For example, delay(cw(1.0, 1e9), 10) would shift the
phase of a CW. Only integer numbers of samples are supported (including negative values).

constant
A real number can be used as a signal, which will be used for all samples (DC).

The output magnitude is limited to the range -1 to 1, so typically the amplitude for cw and comb should be at most 1,
and the std for wgn should be much less than 1.

14.2.2 Operators

In addition to these basic building blocks, signals can be combined with the operators +, - and *. It should be noted
that these operators can only be used on signals: the scalar arguments like amplitude and std must be literal constants
rather than expressions.

14.2.3 Variables

As in Python, it is also possible to assign an expression to a variable, and use the variable several times later. This has
several advantages:

1. It saves typing.

2. The common part only needs to be computed once, speeding up evaluation.

3. Random choices (such as in wgn) are “locked in” to the variable. That simplifies creation of correlated signals
without needing to explicitly choose entropy values.

As an example, the following specification defines two signals which share a sine wave and some noise, and adds further
noise that is uncorrelated between the polarisations:

base = cw(1.0, 1e9) + wgn(0.1);
base + wgn(0.05);
base + wgn(0.05);

Variables can only be defined once, and must be defined before they are used. As before, statements that don’t define
a variable define one of the outputs, and there must be exactly one such statement per single-pol stream.

54 Chapter 14. Digitiser Packet Simulator

katgpucbf, Release 0.1.dev290+gf385556

14.2.4 Dithering

By default, the signal is dithered as a final step, by adding random values uniformly selected from the interval [-0.5,
0.5) least significant bits. The dither values are chosen independently for each single-pol stream, so that they are
uncorrelated.

Dithering can be disabled for an output by wrapping the expression in nodither(). A nodither signal can be assigned
to a variable, but it cannot be combined with other signals using operators nor modified using delay.

14.3 Design

14.3.1 Signal generation

It would be extremely challenging for a CPU to simulate a signal in real-time, particularly given the need to pack the
results into 10-bit samples. Instead, a window of signal is generated on startup, or on request to change the signal, and
then replayed over and over. The length of this window is determined by the --signal-heaps command-line option.
This has a few implications:

1. The frequency resolution for cw and comb is limited by the inverse of the window length. For example, a sinu-
soidal signal must have an integer number of cycles per window, which means that the frequency is rounded to
a multiple of adc-sample-rate

signal-heaps×heap-samples .

2. Noise is correlated in time, and when averaging over long periods of time (longer than the window), the standard
deviation does not decrease with the square root of the integration time. Similarly, the sample mean converges
to the mean of the generated window rather than the population mean.

To speed up the signal generation, dask is used to parallelise the process across multiple CPU cores. Dask presents
a numpy-like interface, but internally splits arrays into chunks and performs computations for each chunk in parallel.
The chunk size is determined by the constant katgpucbf.dsim.signal.CHUNK_SIZE.

The simulator also populates the saturation count and flag in the digitiser_status SPEAD item. A per-heap satu-
ration count is computed with dask (prior to bit-packing), and then packed into the digitiser_status bit-field with
serial code. This accumulation could be done in parallel for better efficiency, but the current approach is reasonably
performant and does not require the sampling code to have any knowledge of the format of the digitiser_status
item.

Generating reproducible random signals needs to be done carefully when parallelising. The given random seed is first
used to produce a SeedSequence for each chunk, and each chunk then uses an independent generator seeded with its
corresponding sequence. This ensures that different instances of the simulator will produce the same sequence given
the same entropy (hence giving correlated noise). Note that the result is dependent on the chunk size.

14.3.2 Transmission

Most of the heavy work of transmission is handled by spead2. To minimise overheads, the heaps are pre-defined, and
put into a spead2.send.HeapReferenceList for bulk transmission with spead2.send.asyncio.AsyncStream.
async_send_heaps(). Additionally, spead2’s rate limiting is used to control the simulated digitiser clock speed.
Since spead2 sends data in small bursts (64 KiB) between sleeps, the delivery of packets will not be as smooth as from
a real MeerKAT digitiser.

To avoid stalling transmission, it is important that spead2’s C++ worker thread always has more data to send, as the
latency of signalling end-of-transmission to Python and then waiting for Python to respond with new heaps would be
significant. To accommodate this, the window is split in half, and each call to spead2 sends only half the window. As
soon as one half finishes transmission, the Python code prepares it to be sent again, in parallel with spead2 starting
transmission of the other half.

14.3. Design 55

https://dask.org/
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.HeapReferenceList
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream.async_send_heaps
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream.async_send_heaps

katgpucbf, Release 0.1.dev290+gf385556

Although the signal is recycled, some work is still needed to prepare a half-window for retransmission, because the
timestamps need to be updated. To make this as efficient as possible, all the timestamps are allocated in a single numpy
array, and each heap references the appropriate entry of the array. This allows a range of timestamps to be updated with
a single numpy operation, rather than a Python loop.

Allowing the signal to be changed mid-flow is done with double-buffering. The new signal is computed asynchronously
into a spare second window. Once that’s completed, the spare and active windows are swapped. The new spare window
may still be referenced by in-flight heaps, so it is necessary to await transmission of those heaps before allowing the
signal to be changed again.

56 Chapter 14. Digitiser Packet Simulator

CHAPTER

FIFTEEN

F-ENGINE PACKET SIMULATOR

In general an XB-Engine needs to receive data for a subset of channels from N F-Engines where N is the telescope array
size. This is complicated to configure and requires many F-Engines. In order to bypass this, an F-Engine simulator has
been created that simulates packets received at the XB-Engine (i.e., packets from multiple F-Engines destined for the
same XB-Engine). This simulator benefits from a server with a Mellanox NIC and ibverbs to run. This fsim simulates
the packet format used by katgpucbf.

The minimum command to run fsim is:

fsim --interface <interface_name> <multicast_address>[+y]:<port>

where

• <interface_name> is the name of the network interface on which to transmit the data;

• <multicast_address> is the multicast address to which all packets are sent. The optional [+y] argument will
create additional multicast streams with the same parameters each on a different multicast addresses consecutivly
after the base address. <port> is the UDP port to transmit data to.

The data rate per multicast address is adc_rate * N_POLS * SAMPLE_BITS * antennas * (channels_per_substream /
channels). With the default arguments, this is 1712000000 * 2 * 8 * 80 * (512/32768) = 34.24 Gbps.

For improved performance, use --ibv to enable ibverbs acceleration1. This requires the CAP_NET_RAW capability to
run. The easiest way to do it is with spead2_net_raw.

See the fsim source code (in src/katgpucbf/fsim/) for a detailed description of how the F-Engine simulator works
and the useful configuration arguments.

1 See the spead2 documentation for information on the requirements (particularly hardware requirements) for ibverbs.

57

katgpucbf, Release 0.1.dev290+gf385556

58 Chapter 15. F-Engine Packet Simulator

CHAPTER

SIXTEEN

QUALIFICATION FRAMEWORK

While the unit tests ensure that individual pieces of the CBF work correctly, the qualification tests ensure that the system
as a whole functions correctly and meets requirements. In software engineering terms these are integration tests.

The qualification tests are stored in the qualification directory and are run with pytest. In addition to the usual pass
or fail indication, the tests produce a report (in PDF format), which describes which tests were run, the steps involved
in the tests, the machines used and so on. It also includes assorted plots showing results.

The tests do not run the katgpucbf code from the local machine. Instead, they connect to an SDP Master Controller and
use it to start appropriate CBFs which they interact with. Facilities are provided for the test to interact with the CBF,
both by sending it KATCP requests and by ingesting the output data. It’s thus necessary to have a master controller set
up (which is beyond the scope of this document) and to have a Docker image of katgpucbf stored in a Docker registry.

Additionally, the hosts in the cluster must be monitored by Prometheus, so that the qualification report can include infor-
mation on the hardware and software configuration. They must run node-exporter with the arguments --collector.
cpu.info and --collector.ethtool.

16.1 Requirements

A requirements.in and requirements.txt are provided in this directory, based on katgpucbf’s
requirements-dev.txt. A pared-down version of this may become available in future.

It’s necessary to have katgpucbf installed for the qualification tests to run, but it is not necessary to have a GPU or
CUDA installed. The necessary parts can be installed with

pip install ".[qualification]"

The machine running the tests needs to be able to receive data from the CBF network. The data rate can become quite
high for larger array sizes.

16.2 Configuration

You will need to create a qualification/pytest.ini file. It is specific to your test environment, so do not commit
it to git. You’ll need to set it up only once per machine that you’re deploying on, and it’ll look something like this:

[pytest]
tester = Your Name
asyncio_mode = auto
master_controller_host = lab5.sdp.kat.ac.za
master_controller_port = 5001

(continues on next page)

59

https://github.com/ska-sa/katsdpcontroller
https://github.com/prometheus/node_exporter

katgpucbf, Release 0.1.dev290+gf385556

(continued from previous page)

prometheus_url = http://lab5.sdp.kat.ac.za:9090
product_name = bobs_qualification_cbf # Use your own name
interface = enp193s0f0
interface_gbps = 90 # Maximum bandwidth to expect from the NIC
use_ibv = true
log_cli = true
log_cli_level = info
addopts = --report-log=report.json

Only set use_ibv if the NIC and the system support ibverbs. See the spead2 documentation for advice on setting that
up. This will probably be needed to successfully test large numbers of channels or antennas.

16.3 Running

Use the following command to run the tests contained in this directory:

spead2_net_raw pytest -v qualification --image-override katgpucbf:harbor.sdp.kat.ac.za/
→˓dpp/katgpucbf:latest

Explanation:

• spead2_net_raw enables ibverbs usage (see use_ibv above)

• --image-override is designed to work in exactly the same way as that in sim_correlator.py, specifying
exactly which Docker image to use for the tests.

The general pytest options apply, so for instance with -x you can stop after the first failed test instead of continuing,
etc.

16.4 Post-processing

The steps above produce a report.json file. To turn that into a usable PDF, run

qualification/report/generate_pdf.py report.json report.pdf

This requires at least texlive-base, texlive-latex-extra, texlive-science and latexmk. This step doesn’t
interact with the live system at all, so it is possible to copy/mount the JSON file to another machine to run this step.

60 Chapter 16. Qualification framework

https://spead2.readthedocs.io/en/latest/py-ibverbs.html

CHAPTER

SEVENTEEN

UPDATING AUTOTUNING DATABASE

Some kernels having tuning parameters which can be optimised automatically. Support for this is provided by the
katsdpsigproc library.

To avoid autotuning occurring at startup, a database of pre-tuned parameters is stored in the repository and inserted
into the Docker image. If necessary, it can be updated using the script docker/autotune.py, run on a machine with
a suitable GPU. It does not need to exactly match the GPU used for deployment, but the more similar it is, the better
the tuning will be.

To ensure that the tuning is done with the same environment (particularly CUDA compiler version) that will be deployed,
the autotuning should be run inside the Docker image. This can be done something like this (the Docker image path is
just an example; adjust as necessary), and takes roughly 30 minutes:

docker pull harbor.sdp.kat.ac.za/dpp/katgpucbf
docker run -it --rm --gpus=all -v $PWD/docker:/output harbor.sdp.kat.ac.za/dpp/katgpucbf␣
→˓/output/autotune.py /output/tuning.db

Note that this may cause the database (docker/tuning.db) to be owned by root and require fixing. Check that the
database is non-empty, then commit it.

The tuning script covers a reasonably large range of parameters, but cannot cover everything. If you see run-time log
messages indicating that autotuning is occurring, you may need to revise the script.

61

https://katsdpsigproc.readthedocs.io/en/latest/user/autotune.html

katgpucbf, Release 0.1.dev290+gf385556

62 Chapter 17. Updating autotuning database

CHAPTER

EIGHTEEN

BENCHMARKING

Performing a benchmark of fgpu or xbgpu under realistic conditions (in particular, with data transmitted over UDP) is
difficult because there is no flow control, and the achievable rate can only be observed indirectly by running the system
at a particular rate and checking whether it keeps up. We wish to know the largest rate at which we keep up most of
the time; we’ll call this the “critical” rate. The scratch/benchmarks directory contains a script to help estimate the
critical rate for fgpu (xbgpu support may be added later).

To run it, you’ll need

• two servers (one to generate data and one to receive it)

– configured for use with spead2’s ibverbs support on a high-speed network between them;

– with a Docker daemon;

• somewhere to run the script (referred to below as the “client”), set up for key-based SSH access to the servers in
accounts that can invoke the Docker client.

• a Docker registry containing the katgpucbf Docker image.

The assignment of threads to processor cores on the servers has been optimised for AMD Epyc servers with at least
16 cores; for other servers or for lower core counts, the benchmark script may need to be tuned to provide sensible
placement.

The client machine will also need a few Python packages installed; you can use pip install -r scratch/
benchmarks/requirements.txt to install them. You do not need to have katgpucbf installed.

On the client machine, you will need to create a TOML file describing the servers you want to use. Each table in the
TOML file describes one server. You can give them any names you like, but by default the script will use the servers
called dsim and fgpu. A typical file looks like this:

[dsim]
hostname = 'server01.domain'
username = 'myusername'
interfaces = ['enp193s0f0np0', 'enp193s0f1np1']

[fgpu]
hostname = 'server02.domain'
username = 'myusername'
interfaces = ['enp193s0f0np0', 'enp193s0f1np1']

The interfaces arrays list the names of the ibverbs-capable network interfaces that can be used for sending or receiving
the data.

By default the servers are loaded from servers.toml in the current directory, although the --servers command-line
option can override this.

63

https://spead2.readthedocs.io/en/latest/py-ibverbs.html
https://toml.io/

katgpucbf, Release 0.1.dev290+gf385556

With all the requirements in place, change to the scratch/benchmarks directory and run ./benchmark_fgpu.py.
There are some options you may need:

-n <N>

Set the number of engines to run simultaneously. The benchmark has been developed for values 1 and 4, and
may need further tuning to effectively test other values.

--image <image>

Override the Docker image to run. The default is set up for the lab environment at SARAO.

--low <rate>, --high <rate>

Lower and upper bounds on the ADC sample rate. The critical rate will be searched between these two bounds.
The benchmark will error out if the lower bound fails or the upper bound passes.

--interval <rate>

Target confidence interval size. The final result will not be an exact rate (because the process is probabilistic) but
rather a range. The algorithm will keep running until it is almost certain that the critical rate is inside an interval of
this size or less. Setting this smaller than roughly 1% of the critical rate can cause the algorithm to fail to converge
(because there is too much noise to determine the rate more accurately). See also --max-comparisons.

--max-comparisons <N>

Bound the number of comparisons to perform in the search (excluding the sanity checks that the low and high
rates are reasonable bounds). If --interval is too small, the algorithm might not otherwise converge. If this
number of comparisons is exceeded, a larger interval will be output.

--step <rate>

Only multiples of this value will be tested. Some parts of the algorithm require time proportional to the square
of the number of steps between the low and high rate, so this should not be too small. However, it must not be
larger than --interval.

--servers <filename>

Server description TOML file.

--dsim-server <name>, --fgpu-server <name>

Override the server names to find in the servers file.

This is not a complete list of options; run the command with --help to see others.

18.1 Multicast groups

The benchmark code currently hard-codes a number of multicast groups. Thus, two instances cannot be run on the
same network at the same time. The groups are all in the 239.102.0.0/16 subnet.

18.2 Algorithm

The algorithm can be seen as a noisy binary search using Bayesian inference. Even when running at a slow enough
rate, packets may be randomly lost, and this could send a classical binary search down the wrong side of the search tree
and yield a very incorrect answer.

Instead, the range from --low to --high is divided into bins of size --step, and for each bin, we keep a probability
that the true rate falls into that bin. We also have a model of how likely a trial is to succeed at a given rate, if we know the
critical rate: very likely/unlikely if the given rate is significantly lower/higher than the critical rate, and more uncertain
when the given rate is close to critical. After running a trial, we can use Bayes’ Theorem to update the probability

64 Chapter 18. Benchmarking

katgpucbf, Release 0.1.dev290+gf385556

distribution. To choose the binary boundary to test, we consider every option and pick the one that gives the largest
expected decrease in the entropy of the distribution.

Determining the success model is non-trivial and an incorrect model could lead to inaccurate answers (as a simple
example, a model that considers trials to be perfect would reduce to classical binary search, which as already discussed
is problematic). The benchmark script also supports a “calibration” mode, in which every candidate rate is tested a
large number of times and the fraction of successes is printed. This does not automatically feed this information back
into the (hard-coded) model.

--calibrate

Run the calibration mode instead of the usual search

--calibrate-repeat <N>

Set the number of repetitions for each rate.

It is highly recommended that --low, --high are used to specify a much smaller range around the critical rate, as this
process is extremely slow.

The output of this calibration process is a text file of space-separated values. Previously-collected results are in the
fgpu_benchmarks subdirectory, and new additions should go here too. After adding or updating one of these files,
run ./fit.py and pass it the filename. It will print out the coefficients for a fitted logistic regression model. The key
information is the np.log(rate) term, which can then be stored in the slope variable in benchmark.py. You can
also pass --plot to ./fit.py to get a plot of the calibration results versus the fitted model (requires matplotlib).

18.2. Algorithm 65

katgpucbf, Release 0.1.dev290+gf385556

66 Chapter 18. Benchmarking

CHAPTER

NINETEEN

TODOS

This list is assembled from throughout the documentation. If you’re looking for something to keep yourself busy, this
is a good place to start.

Note: This list only includes TODOs formatted in a way that Sphinx understands. There are likely others formatted
as comments throughout the code which don’t appear listed here. grep can help you find them!

The test and qualification folders are not pulled in by Sphinx, and so any TODOs there will also not be included
in this list.

Todo: NGC-730 Update scratch directory to have a single config sub-directory. Also add comments on the scripts
themselves to make it easier to follow.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/katgpucbf/checkouts/latest/doc/control.rst,
line 125.)

Todo: NGC-730 Update run-{dsim, fpgu, xbgpu}.sh scripts to standardise over usage of either numactl or
taskset.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/katgpucbf/checkouts/latest/doc/control.rst,
line 179.)

Todo: If this section gets to be too large, it can probably also make its way into its own file.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/katgpucbf/checkouts/latest/doc/data_interfaces.rst,
line 4.)

Todo: NGC-680 - Relationship with katsdpcontroller - reference to a later section which will describe it more thor-
oughly.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/katgpucbf/checkouts/latest/doc/introduction.rst,
line 89.)

Todo: Eventually modify the classes to support 4 and 16 bit input samples. The kernel supports this, but it is not
exposed to the reader. There is no use case for this at the moment, so this is a low priority.

67

katgpucbf, Release 0.1.dev290+gf385556

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/katgpucbf/envs/latest/lib/python3.10/site-
packages/katgpucbf/xbgpu/correlation.py:docstring of katgpucbf.xbgpu.correlation, line 3.)

Todo: Document the down-conversion filter

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/katgpucbf/checkouts/latest/doc/maths.rst,
line 66.)

68 Chapter 19. TODOs

CHAPTER

TWENTY

KATGPUCBF PACKAGE

20.1 Subpackages

20.1.1 katgpucbf.dsim package

Submodules

katgpucbf.dsim.descriptors module

Digitiser simulator descriptor sender.

katgpucbf.dsim.descriptors.create_config()→ StreamConfig
Create simple configuration for descriptor stream.

katgpucbf.dsim.descriptors.create_descriptors_heap()→ Heap
Create a descriptor heap for output dsim data.

katgpucbf.dsim.main module

Digitiser simulator.

Simulates the packet structure of MeerKAT digitisers.

async katgpucbf.dsim.main.async_main()→ None
Asynchronous main entry point.

katgpucbf.dsim.main.first_timestamp(time_converter: TimeConverter, now: float, align: int)→ int
Determine ADC timestamp for first sample and the time at which to start sending.

The resulting value will be a multiple of align.

Parameters

• time_converter – Time converter between UNIX timestamps and ADC samples

• now – Lower bound on first timestamp, expressed as UNIX timestamp

• align – Alignment requirement on the returned ADC sample count

katgpucbf.dsim.main.main()→ None
Run main program.

katgpucbf.dsim.main.parse_args(arglist: Sequence[str] | None = None)→ Namespace
Parse the command-line arguments.

69

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.Namespace

katgpucbf, Release 0.1.dev290+gf385556

katgpucbf.dsim.send module

Transmission of SPEAD data.

class katgpucbf.dsim.send.HeapSet(data: Dataset)
Bases: object

Collection of heaps making up a signal.

The heaps are split into two parts, each of which is preprocessed to allow efficient transmission.

This class should normally be constructed with factory().

Parameters
data – An xarray data set with the following variables:

timestamps
1D array of timestamps, big-endian 64-bit

digitiser_status
2D array of digitiser status values, big-endian 64-bit (indexed by polarisation and time)

payload
2D array of raw sample data (indexed by polarisation and time)

heaps
Heaps referencing the timestamps and payload

The dimensions must be time, pol and data.

classmethod create(timestamps: ndarray, n_substreams: Sequence[int], heap_size: int, digitiser_id:
Sequence[int])→ HeapSet

Create from shape parameters.

Parameters

• timestamps – The timestamp array to associate with the HeapSet (must be big-endian
64-bit).

• n_substreams – Number of substreams to distribute the heaps across, per polarisation

• heap_size – Number of bytes of payload per heap

• digitiser_id – Digitiser ID to insert into the packets, per polarisation (LSB should in-
dicate polarisation)

class katgpucbf.dsim.send.Sender(stream: spead2.send.asyncio.AsyncStream, heap_set: HeapSet,
heap_samples: int)

Bases: object

Manage sending packets.

halt()→ None
Request run() to stop, but do not wait for it.

async join()→ None
Wait for run() to finish.

This does not cause it to stop: use halt() for that.

async run(first_timestamp: int, time_converter: TimeConverter)→ None
Send heaps continuously.

70 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

async set_heaps(heap_set: HeapSet)→ int
Switch out the heap set for a different one.

This does not return until the payload of the previous HeapSet is no longer in use (the timestamps may still
be in use).

The new heap_set must share timestamps with the old one.

Returns
First timestamp which will use the new heap set

Return type
timestamp

async stop()→ None
Stop run() and wait for it to finish.

katgpucbf.dsim.send.make_stream(*, endpoints: Iterable[tuple[str, int]], heap_sets: Iterable[HeapSet],
n_pols: int, adc_sample_rate: float, heap_samples: int, sample_bits: int,
max_heaps: int, ttl: int, interface_address: str, ibv: bool, affinity: int)→
spead2.send.asyncio.AsyncStream

Create a spead2 stream for sending.

Parameters

• endpoints – Destinations (host and port) for all substreams

• n_pols – Number of single-pol streams to send

• adc_sample_rate – Sample rate for each single-pol stream, in Hz

• heap_samples – Number of samples to send in each heap (each heap will be sent as a single
packet)

• sample_bits – Number of bits per sample

• max_heaps – Maximum number of heaps that may be in flight at once

• ttl – IP TTL field

• interface_address – IP address of the interface from which to send the data

• ibv – If true, use ibverbs for acceleration

• affinity – If non-negative, bind the sending thread to this CPU core

katgpucbf.dsim.send.make_stream_base(*, config: StreamConfig, endpoints: Iterable[tuple[str, int]], ttl: int,
interface_address: str, ibv: bool = False, affinity: int = -1,
memory_regions: list | None = None)→
spead2.send.asyncio.AsyncStream

Create a spead2 stream for sending.

This is the low-level support for making either a data or a descriptor stream. Refer to make_stream() for
explanations of the arguments.

20.1. Subpackages 71

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream

katgpucbf, Release 0.1.dev290+gf385556

katgpucbf.dsim.server module

katcp server.

class katgpucbf.dsim.server.DeviceServer(sender: Sender, descriptor_sender: DescriptorSender, spare:
HeapSet, adc_sample_rate: float, sample_bits: int,
dither_seed: int, *args, **kwargs)

Bases: DeviceServer

katcp server.

Parameters

• sender – Sender which is streaming data out. It is halted when the server is stopped.

• spare – Heap set which is not currently being used, but is available to swap in

• adc_sample_rate – Sampling rate in Hz

• sample_bits – Number of bits per output sample

• dither_seed – Dither seed (used only to populate a sensor).

• *args – Passed to base class

• **kwargs – Passed to base class

BUILD_STATE: str = '0.1.dev290+gf385556'

VERSION: str = 'katgpucbf-dsim-0.1'

async on_stop()→ None
Extension point for subclasses to run shutdown code.

This is called after the TCP server has been shut down and all in-flight requests have been completed
or cancelled, but before service tasks are cancelled. Subclasses should override this function rather than
stop() to run late shutdown code because this is called before the flag is set to wake up join().

It is only called if the server was running when stop() was called.

async request_signals(ctx, signals_str: str, period: int | None = None)→ int
Update the signals that are generated.

Parameters

• signals_str – Textural description of the signals. See the docstring for parse_signals for
the language description. The description must produce one signal per polarisation.

• period – Period for the generated signal. It must divide into the value indicated by the
max-period sensor. If not specified, the value of max-period is used.

Returns
First timestamp which will use the new signals

Return type
timestamp

async request_time(ctx)→ float
Return the current UNIX timestamp.

72 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.server.DeviceServer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

katgpucbf, Release 0.1.dev290+gf385556

async set_signals(signals: Sequence[Signal], signals_str: str, period: int | None = None)→ int
Change the signals request_signals().

This is the implementation of request_signals(). See that method for description of the parameters
and return value (signals is the parsed version of signals_str).

katgpucbf.dsim.shared_array module

Shared memory arrays.

class katgpucbf.dsim.shared_array.SharedArray(fd: int, shape: tuple[int, ...], dtype: dtype[Any] | None |
type[Any] | _SupportsDType[dtype[Any]] | str |
tuple[Any, int] | tuple[Any, SupportsIndex |
Sequence[SupportsIndex]] | list[Any] | _DTypeDict |
tuple[Any, Any])

Bases: object

An array that can be passed to another process.

Unlike multiprocessing.shared_memory, the shared memory used for this is not backed by a file, and so is
guaranteed to be cleaned up when the processes involved die off, without the need for a manager process.

This is UNIX (probably Linux) specific.

Do not construct directly. Instead, either use create() to allocate a new array, or multiprocessing.
connection.Connection.recv() to construct a new reference to an existing array in another process.

close()→ None
Close the reference shared array and release the mapping.

Accessing the array after this will most likely crash. It is safe to call twice.

classmethod create(name: str, shape: tuple[int, ...], dtype: dtype[Any] | None | type[Any] |
_SupportsDType[dtype[Any]] | str | tuple[Any, int] | tuple[Any, SupportsIndex |
Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any])→
SharedArray

Create a new array from scratch.

Parameters

• name – An arbitrary name to associate with the array. See os.memfd_create().

• shape – Shape of the array. To simplify this function, it requires a tuple (a scalar cannot
be used).

• dtype – The type of the array.

katgpucbf.dsim.signal module

Synthesis of simulated signals.

katgpucbf.dsim.signal.CHUNK_SIZE = 1048576

Dask chunk size for sampling signals (must be a multiple of 8)

20.1. Subpackages 73

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/multiprocessing.shared_memory.html#module-multiprocessing.shared_memory
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.connection.Connection.recv
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.connection.Connection.recv
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/os.html#os.memfd_create

katgpucbf, Release 0.1.dev290+gf385556

class katgpucbf.dsim.signal.CW(amplitude: float, frequency: float)
Bases: Periodic

Continuous wave.

To make the resulting signal periodic, the frequency is adjusted during sampling so that the sampled result can
be looped.

class katgpucbf.dsim.signal.Comb(amplitude: float, frequency: float)
Bases: Periodic

Signal with periodic impulses.

To make the resulting signal periodic, the frequency is adjusted during sampling so that the sampled result can
be looped.

class katgpucbf.dsim.signal.CombinedSignal(a: Signal, b: Signal, combine: Callable[[Array, Array],
Array], op_name: str)

Bases: Signal

Signal built by combining two other signals.

Parameters

• a – Input signals

• b – Input signals

• combine (collections.abc.Callable[[dask.array.core.Array, dask.array.
core.Array], dask.array.core.Array]) – Operator to combine two arrays

• op_name (str) – Symbol for the operator

a: Signal

b: Signal

combine: Callable[[Array, Array], Array]

op_name: str

sample(n: int, sample_rate: float)→ Array
Sample the signal at regular intervals.

The returned values should be scaled to the range (-1, 1).

Note: Calling this method with two different values of n may yield results that are not consistent with each
other.

Parameters

• n – Number of samples to generate

• sample_rate – Frequency of samples (Hz)

Returns
Dask array of samples, float32. The chunk size must be CHUNK_SIZE.

Return type
samples

74 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

katgpucbf, Release 0.1.dev290+gf385556

class katgpucbf.dsim.signal.Constant(value: float)
Bases: Signal

Fixed value.

sample(n: int, sample_rate: float)→ Array
Sample the signal at regular intervals.

The returned values should be scaled to the range (-1, 1).

Note: Calling this method with two different values of n may yield results that are not consistent with each
other.

Parameters

• n – Number of samples to generate

• sample_rate – Frequency of samples (Hz)

Returns
Dask array of samples, float32. The chunk size must be CHUNK_SIZE.

Return type
samples

value: float

class katgpucbf.dsim.signal.Delay(signal: Signal, delay: int)
Bases: Signal

Delay another signal by an integer number of samples.

Parameters

• signal (katgpucbf.dsim.signal.Signal) – Underlying signal to delay

• delay (int) – Number of samples to delay the signal (may be negative)

delay: int

sample(n: int, sample_rate: float)→ Array
Sample the signal at regular intervals.

The returned values should be scaled to the range (-1, 1).

Note: Calling this method with two different values of n may yield results that are not consistent with each
other.

Parameters

• n – Number of samples to generate

• sample_rate – Frequency of samples (Hz)

Returns
Dask array of samples, float32. The chunk size must be CHUNK_SIZE.

Return type
samples

20.1. Subpackages 75

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

katgpucbf, Release 0.1.dev290+gf385556

signal: Signal

class katgpucbf.dsim.signal.Nodither(signal: Signal)
Bases: Signal

Mark a signal expression as not needing dither.

Parameters
signal (katgpucbf.dsim.signal.Signal) – Underlying signal

sample(n: int, sample_rate: float)→ Array
Sample the signal at regular intervals.

The returned values should be scaled to the range (-1, 1).

Note: Calling this method with two different values of n may yield results that are not consistent with each
other.

Parameters

• n – Number of samples to generate

• sample_rate – Frequency of samples (Hz)

Returns
Dask array of samples, float32. The chunk size must be CHUNK_SIZE.

Return type
samples

signal: Signal

property terminal: bool

Prevent this signal from being used in expressions.

class katgpucbf.dsim.signal.Periodic(amplitude: float, frequency: float)
Bases: Signal

Base class for period signals.

The frequency is adjusted during sampling so that the sampled result can be looped.

amplitude: float

frequency: float

sample(n: int, sample_rate: float)→ Array
Sample the signal at regular intervals.

The returned values should be scaled to the range (-1, 1).

Note: Calling this method with two different values of n may yield results that are not consistent with each
other.

Parameters

• n – Number of samples to generate

76 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

katgpucbf, Release 0.1.dev290+gf385556

• sample_rate – Frequency of samples (Hz)

Returns
Dask array of samples, float32. The chunk size must be CHUNK_SIZE.

Return type
samples

class katgpucbf.dsim.signal.Random(entropy: int | None = None)
Bases: Signal

Base class for randomly-generated signals.

This base class is only suitable when the samples at different times are independent. The derived class must
implement _sample_chunk().

entropy: int

entropy used to populate a np.random.SeedSequence

sample(n: int, sample_rate: float)→ Array
Sample the signal at regular intervals.

The returned values should be scaled to the range (-1, 1).

Note: Calling this method with two different values of n may yield results that are not consistent with each
other.

Parameters

• n – Number of samples to generate

• sample_rate – Frequency of samples (Hz)

Returns
Dask array of samples, float32. The chunk size must be CHUNK_SIZE.

Return type
samples

class katgpucbf.dsim.signal.Signal

Bases: ABC

Abstract base class for signals.

An instance is simply a real-valued function of time, for a single polarisation.

abstract sample(n: int, sample_rate: float)→ Array
Sample the signal at regular intervals.

The returned values should be scaled to the range (-1, 1).

Note: Calling this method with two different values of n may yield results that are not consistent with each
other.

Parameters

• n – Number of samples to generate

20.1. Subpackages 77

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

katgpucbf, Release 0.1.dev290+gf385556

• sample_rate – Frequency of samples (Hz)

Returns
Dask array of samples, float32. The chunk size must be CHUNK_SIZE.

Return type
samples

property terminal: bool

Indicate whether the signal is terminal.

Terminal signals cannot be combined into larger expressions, because they contain information about how
to handle their postprocessing.

class katgpucbf.dsim.signal.SignalService(arrays: Sequence[DataArray], sample_bits: int, dither_seed:
int | None = None)

Bases: object

Compute signals in a separate process.

The provided arrays must be backed by SharedArray, and each must have an xarray attribute called
"shared_array" which holds the backing SharedArray.

Parameters

• arrays – All the arrays that might be passed to sample().

• sample_bits – Number of bits per sample for all queries.

• dither_seed – Seed used to generate a fixed dither.

async sample(signals: Sequence[Signal], timestamp: int, period: int | None, sample_rate: float, out:
DataArray, out_saturated: DataArray | None = None, saturation_group: int = 1)→ None

Perform signal sampling in the remote process.

out and out_saturated must each be one of the arrays passed to the constructor. Only the first n samples
will be populated (and this will be taken as the period).

async stop()→ None
Shut down the process.

exception katgpucbf.dsim.signal.TerminalError(signal: Signal)
Bases: TypeError

Indicate that a terminal signal has been used in an expression.

class katgpucbf.dsim.signal.WGN(std: float, entropy: int | None = None)
Bases: Random

White Gaussian Noise signal.

Each sample in time is an independent Gaussian random variable with zero mean and a given standard deviation.

In practice, the signal has a period equal to the value of n given to sample(), which could lead to undesirable
correlations.

Parameters

• std (float) – Standard deviation of the samples

• entropy (int) – If provided, used to seed the random number generator

78 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

katgpucbf, Release 0.1.dev290+gf385556

std: float = 1.0

standard deviation

katgpucbf.dsim.signal.format_signals(signals: Sequence[Signal])→ str
Inverse of parse_signals().

Currently object identity is not preserved, so if a simple signal is re-used multiple times (e.g., shared across
output signals), it will be repeated in the output. This is subject to change.

katgpucbf.dsim.signal.make_dither(n_pols: int, n: int, entropy: int | None = None)→ DataArray
Create a set of dither signals to use with quantise().

The returned array has pol and data axes, and is backed by a Dask array.

The implementation currently uses a uniform distribution, but that is subject to change.

katgpucbf.dsim.signal.packbits(data: Array, bits: int)→ Array
Pack integers into bytes.

The least-significant bits bits of each integer in data is collected together in big-endian order, and returned as a
sequence of bytes. The total number of bits must form a whole number of bytes.

If the chunks in data are not be aligned on byte boundaries then a slower path is used.

katgpucbf.dsim.signal.parse_signals(prog: str)→ list[Signal]
Generate a set of signals from a domain-specific language.

See Signal specification for a description of the language.

katgpucbf.dsim.signal.quantise(data: Array, bits: int, dither: Array)→ Array
Convert floating-point data to fixed-point.

Parameters

• data – Array of values, nominally in the range -1 to 1 (values outside the range are clamped).

• bits – Total number of bits per output sample (including the sign bit). The input values are
scaled by 2𝑏𝑖𝑡𝑠−1 − 1.

• dither – Values to add to the data after scaling.

katgpucbf.dsim.signal.sample(signals: Sequence[Signal], timestamp: int, period: int | None, sample_rate:
float, sample_bits: int, out: DataArray, out_saturated: DataArray | None =
None, saturation_group: int = 1, *, dither: bool | DataArray = True,
dither_seed: int | None = None)→ None

Sample, quantise and pack a set of signals.

The number of samples to generate is determined from the output array.

Parameters

• signals – Signals to sample, one per polarisation

• timestamp – Timestamp for the first element to return. The signal is rotated by this amount.

• period – Number of samples after which to repeat. This must divide into the total number
of samples to generate. If not specified, uses the total number of samples.

• sample_rate – Passed to Signal.sample()

• sample_bits – Passed to quantise() and packbits()

• out – Output array, with a dimension called pol (which must match the number of signals).
The other dimensions are flattened.

20.1. Subpackages 79

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

• out_saturated – Output array, with the same shape as out, into which saturation counts
are written.

• saturation_group – Samples are taken in contiguous groups of this size and each element
of out_saturated is a saturation count for one group. This must divide into the total number
of samples.

• dither – If true (default), add uniform random values in the range [-0.5, 0.5) after scaling to
reduce artefacts. It may also be a xr.DataArray with axes called pol (which must match
the number of signals) and data (which must have length at least equal to period).

katgpucbf.dsim.signal.saturation_counts(data: Array, saturation_value)→ Array
Return an array indicating counts of saturated elements of data.

The count is taken along each row of data.

Elements are considered saturated if they exceed saturation_value in absolute value.

Module contents

20.1.2 katgpucbf.fgpu package

Submodules

katgpucbf.fgpu.compute module

The Compute class specifies the sequence of operations on the GPU.

Allocations of memory for input, intermediate and output are also handled here.

class katgpucbf.fgpu.compute.Compute(template: ComputeTemplate, command_queue:
AbstractCommandQueue, samples: int, spectra: int,
spectra_per_heap: int)

Bases: OperationSequence

The DSP processing pipeline handling F-engine operation.

The actual running of this operation isn’t done through the _run() method or by calling it directly, if you’re
familiar with the usual method of composing operations. Fgpu’s compute is streaming rather than batched, i.e.
we have to coordinate the receiving of new data and the transmission of processed data along with the actual
processing operation.

Currently, no internal checks for consistency of the parameters are performed. The following constraints are
assumed, Bad Things(TM) may happen if they aren’t followed:

• spectra_per_heap <= spectra - i.e. a chunk of data must be enough to send out at least one heap.

• spectra % spectra_per_heap == 0

• samples >= output.window (see fgpu.output.Output). An input chunk requires at least enough samples
to output a single spectrum.

• samples % 8 == 0

Parameters

• template – Template for the channelisation operation sequence.

• command_queue – The GPU command queue (typically this will be a CUDA Stream) on
which actual processing operations are to be scheduled.

80 Chapter 20. katgpucbf package

https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.OperationSequence
https://katsdpsigproc.readthedocs.io/en/latest/user/operations.html#composing-operations

katgpucbf, Release 0.1.dev290+gf385556

• samples – Number of samples in each input chunk (per polarisation), including padding
samples.

• spectra – Number of spectra in each output chunk.

• spectra_per_heap – Number of spectra to send in each output heap.

bind(**kwargs)→ None
Bind buffers to slots by keyword.

Each keyword argument name specifies a slot name.

Raises

• KeyError – if a named slots does not exist

• TypeError – if a named slot if an alias slot

buffer(name: str)→ DeviceArray
Retrieve the buffer bound to a slot.

It will consult both slots and hidden_slots.

Parameters
name (str) – Name of the slot to access

Returns
Buffer bound to slot name.

Return type
DeviceArray

Raises

• KeyError – If no slot with this name exists

• TypeError – If the slot exists but it is an alias slot

• ValueError – If the slot exists but does not yet have a buffer bound

ensure_all_bound()→ None
Make sure that all slots have a buffer bound, allocating if necessary.

ensure_bound(name: str)→ None
Make sure that a specific slot has a buffer bound, allocating if necessary.

parameters()→ Mapping[str, Any]
Return dictionary of configuration options for this operation.

required_bytes()→ int
Return number of bytes of device storage required.

run_backend(out: DeviceArray, saturated: DeviceArray)→ None
Run the FFT and postproc on the data which has been PFB-FIRed.

Postproc incorporates fine-delay, requantisation and corner-turning.

Parameters
out – Destination for the processed data.

run_ddc(samples: DeviceArray, first_sample: int)→ None
Run the narrowband DDC kernel on the received samples.

Parameters

20.1. Subpackages 81

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.DeviceArray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.DeviceArray
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.DeviceArray
https://docs.python.org/3/library/constants.html#None
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.DeviceArray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

• samples – A device array containing the samples.

• first_sample – Timestamp (in samples) of the initial sample. This is used to correctly
phase the mixer.

run_narrowband_frontend(in_offsets: Sequence[int], out_offset: int, spectra: int)→ None
Run the PFB-FIR on the received samples, for a narrowband pipeline.

Parameters

• in_offsets – Index of first sample in input array to process (one for each pol).

• out_offset – Index of first sample in output array to write.

• spectra – How many spectra worth of samples to push through the PFB-FIR.

run_wideband_frontend(samples: DeviceArray, dig_total_power: DeviceArray, in_offsets: Sequence[int],
out_offset: int, spectra: int)→ None

Run the PFB-FIR on the received samples, for a wideband pipeline.

Parameters

• samples – A device arrays containing the samples

• dig_total_power – A device array holding digitiser total power for each pol. This is not
zeroed.

• in_offsets – Index of first sample in input array to process (one for each pol).

• out_offset – Index of first sample in output array to write.

• spectra – How many spectra worth of samples to push through the PFB-FIR.

class katgpucbf.fgpu.compute.ComputeTemplate(context: AbstractContext, taps: int, channels: int,
dig_sample_bits: int, out_bits: int, narrowband:
NarrowbandConfig | None)

Bases: object

Template for the channelisation operation sequence.

The reason for doing things this way can be read in the relevant katsdpsigproc docs.

Parameters

• context – The GPU context that we’ll operate in.

• taps – The number of taps that you want the resulting PFB-FIRs to have.

• channels – Number of output channels into which the input data will be decomposed.

• dig_sample_bits – Number of bits per digitiser sample.

• out_bits – Number of bits per output real component.

• narrowband – Configuration for narrowband operation. If None, wideband is assumed.

instantiate(command_queue: AbstractCommandQueue, samples: int, spectra: int, spectra_per_heap: int)
→ Compute

Generate a Compute object based on the template.

class katgpucbf.fgpu.compute.NarrowbandConfig(decimation: int, mix_frequency: float, weights: ndarray)
Bases: object

Configuration for a narrowband stream.

82 Chapter 20. katgpucbf package

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.DeviceArray
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.DeviceArray
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://katsdpsigproc.readthedocs.io/en/latest/user/operations.html#operation-templates
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#object

katgpucbf, Release 0.1.dev290+gf385556

decimation: int

Factor by which bandwidth is reduced

mix_frequency: float

Mixer frequency, in cycles per ADC sample

weights: ndarray

Downconversion filter weights (float)

katgpucbf.fgpu.ddc module

Digital down-conversion.

class katgpucbf.fgpu.ddc.DDC(template: DDCTemplate, command_queue: AbstractCommandQueue,
samples: int, n_pols: int)

Bases: Operation

Operation implementating DDCTemplate.

The kernel takes 10-bit integer inputs (real) and produces 32-bit floating-point outputs (complex). The user
provides a real-valued FIR baseband filter and a mixer frequency for translating the signal from the desired band
to baseband.

Element j of the output contains the dot product of weights with elements 𝑑𝑗, 𝑑(𝑗 + 1), . . . , 𝑑(𝑗 + 𝑡𝑎𝑝𝑠 − 1)
of the mixed signal. The mixed signal is the product of sample 𝑗 of the input with 𝑒2𝜋𝑖(𝑎𝑗+𝑏), where 𝑎 is the
mix_frequency argument to configure() and 𝑏 is the (settable) mix_phase property.

Slots

in
[samples * input_sample_bits // BYTE_BITS, uint8] Input digitiser samples in a big chunk.

out
[out_samples, complex64] Filtered and subsampled output data

Raises
ValueError – If samples is not a multiple of 8, or is less than template.taps

Parameters

• template – Template for the PFB-FIR operation.

• command_queue – The GPU command queue

• samples – Number of input samples to store, per polarisation

• n_pols – Number of polarisations

configure(mix_frequency: float, weights: ndarray)→ None
Set the mixer frequency and filter weights.

This is a somewhat expensive operation, as it computes lookup tables and transfers them to the device
synchronously. It is only intended to be used at startup rather than continuously.

Note: The provided mix_frequency is quantised. The actual mixer frequency can be retrieved from the
mix_frequency property.

20.1. Subpackages 83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.Operation
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

property mix_frequency: float

Mixer frequency in cycles per ADC sample.

class katgpucbf.fgpu.ddc.DDCTemplate(context: AbstractContext, taps: int, subsampling: int,
input_sample_bits: int, tuning: _TuningDict | None = None)

Bases: object

Template for digital down-conversion.

See DDC for a more detailed description of what it does.

Parameters

• context – The GPU context that we’ll operate in

• taps – Number of taps in the FIR filter

• subsampling – Fraction of samples to retain after filtering

• input_sample_bits – Bits per input sample

classmethod autotune(context: AbstractContext, taps: int, subsampling: int, input_sample_bits: int)→
_TuningDict

Determine tuning parameters.

autotune_version = 2

instantiate(command_queue: AbstractCommandQueue, samples: int, n_pols: int)→ DDC
Generate a DDC object based on the template.

static unroll_align(subsampling: int, input_sample_bits: int)→ int
Determine the factor that must divide into unroll.

katgpucbf.fgpu.delay module

A collection of classes and methods for delay-tracking.

It should be noted that the classes in this module use a slightly different model than the public katcp interface. The
reference channel for phase change is channel 0, rather than the centre channel. The difference is dealt with by the
request handler for the ?delays katcp request.

class katgpucbf.fgpu.delay.AbstractDelayModel

Bases: ABC

Abstract base class for delay models.

All units are samples rather than SI units.

abstract range(start: int, stop: int, step: int)→ tuple[ndarray, ndarray, ndarray]
Find input timestamps corresponding to a range of output samples.

For each output sample with timestamp in range(start, stop, step), it determines a corresponding
input sample.

Parameters

• start – First timestamp (inclusive).

• stop – Last timestamp (exclusive)

• step – Interval between timestamps (must be positive).

84 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#float
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

katgpucbf, Release 0.1.dev290+gf385556

Returns

• orig_time – Undelayed integer timestamps corresponding to range(start, stop,
step)

• residual – Fractional sample delay not accounted for by time - orig_time.

• phase – Fringe-stopping phase to be added.

abstract skip(target: int, start: int, step: int)→ int
Find the next output time for which the input time is at least target.

The output time must also be at least start and a multiple of step.

class katgpucbf.fgpu.delay.AlignedDelayModel(base: _DM, align: int)
Bases: AbstractDelayModel, Generic[_DM]

Wrap another delay model and enforce an alignment on original timestamp.

Note that this can cause residual delays to be larger than 1.

range(start: int, stop: int, step: int)→ tuple[ndarray, ndarray, ndarray]
Find input timestamps corresponding to a range of output samples.

For each output sample with timestamp in range(start, stop, step), it determines a corresponding
input sample.

Parameters

• start – First timestamp (inclusive).

• stop – Last timestamp (exclusive)

• step – Interval between timestamps (must be positive).

Returns

• orig_time – Undelayed integer timestamps corresponding to range(start, stop,
step)

• residual – Fractional sample delay not accounted for by time - orig_time.

• phase – Fringe-stopping phase to be added.

skip(target: int, start: int, step: int)→ int
Find the next output time for which the input time is at least target.

The output time must also be at least start and a multiple of step.

class katgpucbf.fgpu.delay.LinearDelayModel(start: int, delay: float, delay_rate: float, phase: float,
phase_rate: float)

Bases: AbstractDelayModel

Delay model that adjusts delay linearly over time.

Parameters

• start – Output sample at which the model should start being used.

• delay – Delay to apply at start. [seconds]

• delay_rate – Rate of change of delay. [seconds/second]

• phase – Fringe-stopping phase to apply with the fine delay. [radians]

• phase_rate – Rate of change of the fringe-stopping phase. [radians/second]

20.1. Subpackages 85

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

katgpucbf, Release 0.1.dev290+gf385556

Raises
ValueError – if rate is greater than or equal to 1 or start is negative

range(start: int, stop: int, step: int)→ tuple[ndarray, ndarray, ndarray]
Find input timestamps corresponding to a range of output samples.

For each output sample with timestamp in range(start, stop, step), it determines a corresponding
input sample.

Parameters

• start – First timestamp (inclusive).

• stop – Last timestamp (exclusive)

• step – Interval between timestamps (must be positive).

Returns

• orig_time – Undelayed integer timestamps corresponding to range(start, stop,
step)

• residual – Fractional sample delay not accounted for by time - orig_time.

• phase – Fringe-stopping phase to be added.

skip(target: int, start: int, step: int)→ int
Find the next output time for which the input time is at least target.

The output time must also be at least start and a multiple of step.

class katgpucbf.fgpu.delay.MultiDelayModel(callback_func: Callable[[Sequence[LinearDelayModel]],
None] | None = None)

Bases: AbstractDelayModel

Piece-wise linear delay model.

The model evolves over time by calling add(). It must only be queried with monotonically increasing start
values, because as soon as a query is made beyond the end of the first piece it is discarded. Additionally, after
calling skip(), the return value should be treated as a lower bound for future start values.

In the initial state it has a model with zero delay.

It accepts an optional callback function that takes in the LinearDelayModels attached to this MultiDelayModel.
This callback is called whenever the first linear piece changes. It is also called immediately by the constructor.

add(model: LinearDelayModel)→ None
Extend the model with a new linear model.

The new model is applicable from its start time forever. If the new model has an earlier start time than some
previous model, the previous model will be discarded.

range(start: int, stop: int, step: int)→ tuple[ndarray, ndarray, ndarray]
Find input timestamps corresponding to a range of output samples.

For each output sample with timestamp in range(start, stop, step), it determines a corresponding
input sample.

Parameters

• start – First timestamp (inclusive).

• stop – Last timestamp (exclusive)

• step – Interval between timestamps (must be positive).

86 Chapter 20. katgpucbf package

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

katgpucbf, Release 0.1.dev290+gf385556

Returns

• orig_time – Undelayed integer timestamps corresponding to range(start, stop,
step)

• residual – Fractional sample delay not accounted for by time - orig_time.

• phase – Fringe-stopping phase to be added.

skip(target: int, start: int, step: int)→ int
Find the next output time for which the input time is at least target.

The output time must also be at least start and a multiple of step.

exception katgpucbf.fgpu.delay.NonMonotonicQueryWarning

Bases: UserWarning

Delay model was queried non-monotonically.

katgpucbf.fgpu.delay.wrap_angle(angle)
Restrict an angle to [-pi, pi].

This works on both Python scalars and numpy arrays.

katgpucbf.fgpu.engine module

katgpucbf.fgpu.main module

katgpucbf.fgpu.output module

Data structures capturing static configuration of a single output stream.

class katgpucbf.fgpu.output.NarrowbandOutput(name: str, channels: int, jones_per_batch: int, taps: int,
w_cutoff: float, dst: list[Endpoint], centre_frequency:
float, decimation: int, ddc_taps: int, weight_pass: float)

Bases: Output

Static configuration for a narrowband stream.

centre_frequency: float

ddc_taps: int

decimation: int

property internal_channels: int

Number of channels in the PFB.

property internal_decimation: int

Factor by which bandwidth is reduced by the DDC kernel.

property spectra_samples: int

Number of incoming digitiser samples needed per spectrum.

Note that this is the spacing between spectra. Each spectrum uses an overlapping window with more samples
than this.

property subsampling: int

Number of digitiser samples between PFB input samples.

20.1. Subpackages 87

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#UserWarning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

katgpucbf, Release 0.1.dev290+gf385556

weight_pass: float

property window: int

Number of digitiser samples that contribute to each output spectrum.

class katgpucbf.fgpu.output.Output(name: str, channels: int, jones_per_batch: int, taps: int, w_cutoff:
float, dst: list[Endpoint])

Bases: ABC

Static configuration for an output stream.

channels: int

dst: list[Endpoint]

abstract property internal_channels: int

Number of channels in the PFB.

abstract property internal_decimation: int

Factor by which bandwidth is reduced by the DDC kernel.

jones_per_batch: int

name: str

property spectra_per_heap: int

Number of spectra in each output heap.

abstract property spectra_samples: int

Number of incoming digitiser samples needed per spectrum.

Note that this is the spacing between spectra. Each spectrum uses an overlapping window with more samples
than this.

abstract property subsampling: int

Number of digitiser samples between PFB input samples.

taps: int

w_cutoff: float

abstract property window: int

Number of digitiser samples that contribute to each output spectrum.

class katgpucbf.fgpu.output.WidebandOutput(name: str, channels: int, jones_per_batch: int, taps: int,
w_cutoff: float, dst: list[Endpoint])

Bases: Output

Static configuration for a wideband output stream.

property decimation: int

property internal_channels: int

Number of channels in the PFB.

property internal_decimation: int

Factor by which bandwidth is reduced by the DDC kernel.

88 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

katgpucbf, Release 0.1.dev290+gf385556

property spectra_samples: int

Number of incoming digitiser samples needed per spectrum.

Note that this is the spacing between spectra. Each spectrum uses an overlapping window with more samples
than this.

property subsampling: int

Number of digitiser samples between PFB input samples.

property window: int

Number of digitiser samples that contribute to each output spectrum.

katgpucbf.fgpu.pfb module

PFB module.

These classes handle the operation of the GPU in performing the PFB-FIR part through a mako-templated kernel.

class katgpucbf.fgpu.pfb.PFBFIR(template: PFBFIRTemplate, command_queue: AbstractCommandQueue,
samples: int, spectra: int)

Bases: Operation

The windowing FIR filters that form the first part of the PFB.

The best place to look in order to understand how these work from a strictly DSP sense is Danny C. Price’s paper
[Pri].

In general the operation can read some interval of the input slot and write to some interval of the output slot. The
sizes of these slots need not be related. This can be useful to build up a larger output from smaller invocations
that have different coarse delays.

Slots

The slots depend on template.complex_input. If it is false, then they are

in
[pols × (samples * input_sample_bits // BYTE_BITS), uint8] Input samples in a big chunk.

out
[pols × spectra × 2*channels, float32] FIR-filtered time data, ready to be processed by the FFT.

weights
[2*channels*taps, float32] The time-domain transfer function of the FIR filter to be applied.

total_power
[pols, uint64] Sum of squares of input samples. This will not include every input sample. Rather, it will
contain a specific tap from each PFB window (currently, the last tap, but that is an implementation detail).

This is incremented rather than overwritten. It is the caller’s responsibility to zero it when desired, or
alternatively to track values before and after to measure the change.

Otherwise, they are

in
[samples, complex64] Input samples

out
[spectra × channels, complex64] See above

20.1. Subpackages 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.Operation

katgpucbf, Release 0.1.dev290+gf385556

weights
[channels*taps, float32] See above

Raises

• ValueError – If samples is not a multiple of 8 and complex_input is false

• ValueError – If samples is too large (more than 2**29)

Parameters

• template – Template for the PFB-FIR operation.

• command_queue – The GPU command queue (typically this will be an instance of
katsdpsigproc.cuda.CommandQueuewhich wraps a CUDA Stream) on which actual pro-
cessing operations are to be scheduled.

• samples – Number of input samples that will be processed each time the operation is run.

• spectra – Number of spectra that we will get from each chunk of samples.

class katgpucbf.fgpu.pfb.PFBFIRTemplate(context: AbstractContext, taps: int, channels: int,
input_sample_bits: int, unzip_factor: int = 1, *, complex_input:
bool = False, n_pols: int)

Bases: object

Template for the PFB-FIR operation.

The operation can operate in two different modes. In the first mode (intended for a wideband channeliser),
the input contains real digitiser samples (bit-packed integers). In the second mode (intended for a narrowband
channeliser), the digitiser samples have already been preprocessed and the PFB operates on complex-valued
inputs (floating point). The mode is selected with the complex_input parameter.

Parameters

• context – The GPU context that we’ll operate in.

• taps – The number of taps that you want the resulting PFB-FIRs to have.

• channels – Number of channels into which the input data will be decomposed.

• input_sample_bits – Bits per each component of input. If complex_input is true, the input
values are floating-point complex numbers and this must equal 32. Otherwise, the inputs are
packed integers, and the value must be in DIG_SAMPLE_BITS_VALID.

• unzip_factor – The output is reordered so that every unzip_factor’ith pair of outputs (or
single complex output, if complex_input is true) is placed contiguously.

• complex_input – Operation mode (see above).

• n_pols – Number of polarisations to operate over. The polarisations are stored contiguously
in memory, but have independent offsets.

Raises

• ValueError – If taps is not positive.

• ValueError – If complex_input is true and input_sample_bits is not 32.

• ValueError – If complex_input is false and input_sample_bits is not in
DIG_SAMPLE_BITS_VALID.

• ValueError – If channels is not an even power of 2.

• ValueError – If channels is not a multiple of unzip_factor.

90 Chapter 20. katgpucbf package

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.cuda.CommandQueue
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

katgpucbf, Release 0.1.dev290+gf385556

• ValueError – If 2*channels is not a multiple of the workgroup size (currently 128).

instantiate(command_queue: AbstractCommandQueue, samples: int, spectra: int)→ PFBFIR
Generate a PFBFIR object based on the template.

katgpucbf.fgpu.postproc module

Postproc module.

These classes handle the operation of the GPU in performing the fine-delay, per-channel gains, requantisation and
corner-turn through a mako-templated kernel.

class katgpucbf.fgpu.postproc.Postproc(template: PostprocTemplate, command_queue:
AbstractCommandQueue, spectra: int, spectra_per_heap: int)

Bases: Operation

The fine-delay, requant and corner-turn operations coming after the PFB.

Slots

in
[N_POLS × spectra × unzip_factor × channels // unzip_factor, complex64] Input channelised data for the
two polarisations. These are formed by taking the complex-to-complex Fourier transform of the input
reinterpreted as a complex input. See FFT for details.

out
[spectra // spectra_per_heap × out_channels × spectra_per_heap × N_POLS] Output F-engine data, quan-
tised and corner-turned, ready for transmission on the network. See gaussian_dtype() for the type.

saturated
[spectra // spectra_per_heap × N_POLS, uint32] Number of saturated complex values in out.

fine_delay
[spectra × N_POLS, float32] Fine delay in samples (one value per pol).

phase
[spectra × N_POLS, float32] Fixed phase adjustment in radians (one value per pol).

gains
[out_channels × N_POLS, complex64] Per-channel gain (one value per pol).

Parameters

• template (PostprocTemplate) – The template for the post-processing operation.

• command_queue (AbstractCommandQueue) – The GPU command queue (typically this
will be a CUDA Stream) on which actual processing operations are to be scheduled.

• spectra (int) – Number of spectra on which post-prodessing will be performed.

• spectra_per_heap (int) – Number of spectra to send out per heap.

class katgpucbf.fgpu.postproc.PostprocTemplate(context: AbstractContext, channels: int, unzip_factor:
int = 1, *, complex_pfb: bool, out_bits: int,
out_channels: tuple[int, int] | None = None)

Bases: object

Template for the postproc operation.

20.1. Subpackages 91

https://docs.python.org/3/library/exceptions.html#ValueError
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.Operation
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

katgpucbf, Release 0.1.dev290+gf385556

Parameters

• context – The GPU context that we’ll operate in.

• channels – Number of input channels in each spectrum.

• unzip_factor – Radix of the final Cooley-Tukey FFT step performed by the kernel.

• complex_pfb – If true, the PFB is a complex-to-complex transform, and no real-to-complex
fixup is needed. Additionally, the DC channel is considered to be the centre of the band i.e.
it is written to the middle of the output rather than the start (and similarly, gains for it are
loaded from the middle of the gain array etc).

• out_bits – Bits per real/imaginary value. Only 4 or 8 are currently supported. When 4, the
real part is in the most-significant bits.

• out_channels – Range of channels to write to the output (defaults to all).

instantiate(command_queue: AbstractCommandQueue, spectra: int, spectra_per_heap: int)→ Postproc
Generate a Postproc object based on this template.

katgpucbf.fgpu.recv module

Recv module.

class katgpucbf.fgpu.recv.Chunk(self: spead2._spead2.recv.Chunk, **kwargs)
Bases: Chunk

Collection of heaps passed to the GPU at one time.

It extends the spead2 base class to store a timestamp (computed from the chunk ID when the chunk is received),
and optionally store a vkgdr device array.

When used as a context manager, it will call recycle() on exit.

device: object

recycle()→ None
Return the chunk to the owning stream/group.

sink: ReferenceType

timestamp: int

class katgpucbf.fgpu.recv.Layout(sample_bits: int, heap_samples: int, chunk_samples: int,
mask_timestamp: bool)

Bases: BaseLayout

Parameters controlling the sizes of heaps and chunks.

property chunk_heaps: int

Number of heaps per chunk, on time axis.

chunk_samples: int

property heap_bytes: int

Number of payload bytes per heap.

heap_samples: int

92 Chapter 20. katgpucbf package

https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

katgpucbf, Release 0.1.dev290+gf385556

mask_timestamp: bool

sample_bits: int

property timestamp_mask: uint64

Mask to AND with incoming timestamps.

async katgpucbf.fgpu.recv.iter_chunks(ringbuffer: ChunkRingbuffer, layout: Layout, sensors: SensorSet,
time_converter: TimeConverter)→ AsyncGenerator[Chunk,
None]

Iterate over the chunks and update sensors.

It also populates the chunk timestamp.

Parameters

• ringbuffer – Source of chunks.

• layout – Structure of the streams.

• sensors – Sensor set containing at least the sensors created by make_sensors().

• time_converter – Converter to turn data timestamps into sensor timestamps.

katgpucbf.fgpu.send module

Network transmission handling.

class katgpucbf.fgpu.send.Chunk(data: ndarray, saturated: ndarray, *, n_substreams: int, feng_id: int,
spectra_samples: int)

Bases: object

An array of frames, spanning multiple timestamps.

Parameters

• data – Storage for voltage data, with shape (n_frames, n_channels, n_spectra_per_heap,
N_POLS) and a dtype returned by gaussian_dtype().

• saturated – Storage for saturation counts, with shape (n_frames, N_POLS) and dtype
uint32.

• n_substreams – Number of substreams over which the data will be divided (must divide
evenly into the number of channels).

• feng_id – F-Engine ID to place in the SPEAD heaps

• spectra_samples – Difference in timestamps between successive frames

cleanup: Callable[[], None] | None

Callback to return the chunk to the appropriate queue

present

Whether each frame has valid data

async send(streams: list[spead2.send.asyncio.AsyncStream], frames: int, time_converter: TimeConverter,
sensors: SensorSet, output_name: str)→ None

Transmit heaps over SPEAD streams.

Frames from 0 to frames - 1 are sent asynchronously. The contents of each frame are distributed over the
streams. If the number of streams does not divide into the number of destination endpoints, there will be
imbalances, because the partitioning is the same for every frame.

20.1. Subpackages 93

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://spead2.readthedocs.io/en/latest/py-recv-chunk.html#spead2.recv.asyncio.ChunkRingbuffer
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SensorSet
https://docs.python.org/3/library/collections.abc.html#collections.abc.AsyncGenerator
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream
https://docs.python.org/3/library/functions.html#int
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SensorSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

property timestamp: int

Timestamp of the first heap.

Setting this property updates the timestamps stored in all the heaps. This should not be done while a
previous call to send() is still in progress.

class katgpucbf.fgpu.send.Frame(timestamp: ndarray, data: ndarray, saturated: ndarray, *, n_substreams:
int, feng_id: int)

Bases: object

Holds all the heaps for a single timestamp.

It does not own its memory - the backing store is in Chunk .

Parameters

• timestamp – Zero-dimensional array of dtype >u8 holding the timestamp.

• data – Payload data for the frame, of shape (channels, spectra_per_heap, N_POLS).

• saturated – Saturation data for the frame, of shape (N_POLS,)

• feng_id – Value to put in feng_id SPEAD item

• n_substreams – Number of substreams into which the channels are divided

katgpucbf.fgpu.send.PREAMBLE_SIZE = 72

Number of non-payload bytes per packet (header, 8 items pointers)

katgpucbf.fgpu.send.make_descriptor_heap(*, channels_per_substream: int, spectra_per_heap: int,
sample_bits: int)→ Heap

Create a descriptor heap for output F-Engine data.

katgpucbf.fgpu.send.make_streams(*, output_name: str, thread_pool: ThreadPool, endpoints: list[Endpoint],
interfaces: list[str], ttl: int, ibv: bool, packet_payload: int, comp_vector:
int, buffer: int, bandwidth: float, send_rate_factor: float, feng_id: int,
num_ants: int, n_data_heaps: int, chunks: Sequence[Chunk])→
list[spead2.send.asyncio.AsyncStream]

Create asynchronous SPEAD streams for transmission.

Each stream is configured with substreams for all the end-points. They differ only in the network interface used
(there is one per interface). Thus, they can be used interchangeably for load-balancing purposes.

Module contents

katgpucbf.fgpu.DIG_SAMPLE_BITS_VALID = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16]

Valid values for the --dig-sample-bits command-line option

20.1.3 katgpucbf.fsim package

Submodules

katgpucbf.fsim.main module

Simulate channelised data from the MeerKAT F-Engines destined for one or more XB-Engines.

Refer to F-Engine Packet Simulator for more information.

94 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#list
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream

katgpucbf, Release 0.1.dev290+gf385556

katgpucbf.fsim.main.QUEUE_DEPTH = 8

Number of heaps in time to keep in flight

class katgpucbf.fsim.main.Sender(args: Namespace, idx: int)
Bases: object

Manage sending data to a single XB-engine.

async run(sync_time: float, run_once: bool)→ None
Send heaps until cancelled.

async katgpucbf.fsim.main.async_main()→ None
Run main program.

katgpucbf.fsim.main.main()→ None
Run main program.

katgpucbf.fsim.main.make_heap(timestamp: ndarray, feng_id: int, channel_offset: int, payload: ndarray)→
HeapReference

Create a heap to transmit.

The timestamp must be a zero-dimensional array of dtype >u8. It will be transmitted by reference, so it can be
updated in place to change the stored timestamp.

katgpucbf.fsim.main.make_heap_payload(out: ndarray, heap_index: int, feng_id: int, n_ants: int)→ None
Create the simulated payload data for a heap.

A pattern is chosen that will hopefully be easy to verify at the receiver graphically. On each F-Engine, the signal
amplitude will increase linearly over time for each channel. Each channel will have a different starting amplitude
but the rate of increase will be the same for all channels.

Each F-Engine will have the same same signal amplitude for the same timestamp, but the signal phase will be
different. The signal phase remains constant across all channels in a single F-Engine. By examining the signal
phase it can be verified that correct feng_id is attached to the correct data.

These samples need to be stored as 8 bit samples. As such, the amplitude is wrapped each time it reaches 127.
127 is used as the amplitude when multiplied by the phase can reach -127. The full range of values is covered.

This current format is not fixed and it is likely that it will be adjusted to be suited for different verification needs.

Parameters

• out – Output array, with shape (n_channels_per_substream, n_spectra_per_heap, N_POLS,
COMPLEX)

• heap_index – Heap index on time axis

• feng_id – Heap index on antenna axis

• n_ants – Number of antennas in the array

katgpucbf.fsim.main.make_stream(args: Namespace, idx: int, data: ndarray)→
spead2.send.asyncio.AsyncStream

Create a SPEAD stream for a single destination.

Parameters

• args – Command-line arguments

• idx – Index into the destinations to use

• data – All payload data for this destination

20.1. Subpackages 95

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream

katgpucbf, Release 0.1.dev290+gf385556

katgpucbf.fsim.main.parse_args(arglist: Sequence[str] | None = None)→ Namespace
Parse the command-line arguments.

Module contents

20.1.4 katgpucbf.xbgpu package

Submodules

katgpucbf.xbgpu.beamform module

Implement the calculations for beamforming.

class katgpucbf.xbgpu.beamform.Beamform(template: BeamformTemplate, command_queue:
AbstractCommandQueue, n_frames: int, n_ants: int,
n_channels: int, seed: int, sequence_first: int, sequence_step:
int = 1)

Bases: Operation

Operation for beamforming.

For ease-of-use with the data formats used in the rest of katgpucbf, time is split into two dimensions: a coarse
outer dimension (called “frames”) and a finer inner dimension (“spectra”).

Slots

in
[n_frames × n_ants × n_channels × n_spectra_per_frame × N_POLS × COMPLEX, int8] Complex (Gaus-
sian integer) input channelised voltages

out
[n_frames × n_beams × n_channels × n_spectra_per_frame × COMPLEX, int8] Complex (Gaussian inte-
ger) output channelised voltages

saturated: n_beams, uint32
Number of saturated output values, per beam. This value is incremented by the kernel, so should be explic-
itly zeroed first if desired.

weights
[n_ants × n_beams, complex64] Complex scale factor to apply to each antenna for each beam

delays
[n_ants × n_beams, float32] Delay used to compute channel-dependent phase rotation. The rotation applied
is 𝑒𝑗𝜋𝑐𝑑 where 𝑐 is the channel number and 𝑑 is the delay value. Note that this will not apply any rotation
to the first channel in the data; any such rotation needs to be baked into weights.

rand_states
[n_frames × n_channels × n_spectra_per_frame, curandStateXORWOW_t (packed)] Independent random
states for generating dither values. This is set up by the constructor and should not normally need to be
touched.

Parameters

• template – The template for the operation

• command_queue – The command queue on which to enqueue the work

96 Chapter 20. katgpucbf package

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.Operation

katgpucbf, Release 0.1.dev290+gf385556

• n_frames – Number of frames (coarse time dimension)

• n_ants – Number of antennas

• n_channels – Number of frequency channels

• seed – See RandomStateBuilder.

• sequence_first – See RandomStateBuilder.

• sequence_step – See RandomStateBuilder.

class katgpucbf.xbgpu.beamform.BeamformTemplate(context: AbstractContext, beam_pols: Sequence[int],
n_spectra_per_frame: int)

Bases: object

Template for beamforming.

Parameters

• context – The GPU context that we’ll operate in.

• beam_pols – One entry per single-polarisation output beam. Each entry is either 0 or 1, to
indicate which input polarisation to use in the beam.

• n_spectra_per_frame – Number of samples in time axis for each frame (fine time dimen-
sion) - see Beamform .

instantiate(command_queue: AbstractCommandQueue, n_frames: int, n_ants: int, n_channels: int, seed:
int, sequence_first: int, sequence_step: int = 1)→ Beamform

Generate a Beamform object based on the template.

katgpucbf.xbgpu.bsend module

Module for sending tied array channelised voltage products onto the network.

class katgpucbf.xbgpu.bsend.BSend(outputs: Sequence[BOutput], frames_per_chunk: int, n_tx_items: int,
n_channels: int, n_channels_per_substream: int, spectra_per_heap: int,
adc_sample_rate: float, timestamp_step: int, send_rate_factor: float,
channel_offset: int, context: AbstractContext, stream_factory:
Callable[[StreamConfig, Sequence[ndarray]],
spead2.send.asyncio.AsyncStream], packet_payload: int = 8192,
tx_enabled: bool = False)

Bases: object

Class for turning tied array channelised voltage products into SPEAD heaps.

This class creates a queue of chunks that can be sent out onto the network. To obtain a chunk, call
get_free_chunk() - which will return a Chunk . This object will create a limited number of transmit buffers
and keep recycling them, avoiding any memory allocation at runtime.

The transmission of a chunk’s data is abstracted by send_chunk(). This invokes transmission and immediately
returns the Chunk back to the queue for reuse.

This object keeps track of each tied-array-channelised-voltage data stream by means of a substreams in spead2.
send.asyncio.AsyncStream, allowing for individual enabling and disabling of the data product.

To allow this class to be used with multiple transports, the constructor takes a factory function to create the
stream.

Parameters

20.1. Subpackages 97

https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Sequence
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream

katgpucbf, Release 0.1.dev290+gf385556

• outputs – Sequence of output.BOutput.

• frames_per_chunk – Number of Frames in each transmitted Chunk .

• n_tx_items – Number of Chunk to create.

• adc_sample_rate – See XBEngine for further information.

• n_channels – See XBEngine for further information.

• n_channels_per_substream – See XBEngine for further information.

• spectra_per_heap – See XBEngine for further information.

• channel_offset – See XBEngine for further information.

• timestamp_step – The timestamp step between successive heaps.

• send_rate_factor – Factor dictating how fast the send-stream should transmit data.

• context – Device context to create buffers.

• stream_factory – Callback function to create the spead2 send stream. It is passed the
stream configuration and memory buffers.

• packet_payload – Size, in bytes, for the output packets (tied array channelised voltage
payload only; headers and padding are added to this).

• tx_enabled – Enable/Disable transmission.

descriptor_heap: Heap

enable_substream(stream_id: int, enable: bool = True)→ None
Enable/Disable a substream’s data transmission.

BSend operates as a large single stream with multiple substreams. Each substream is its own data product
and is required to be enabled/disabled independently.

Parameters

• stream_id – Index of the substream’s data product.

• enable – Boolean indicating whether the stream_id should be enabled or disabled.

async get_free_chunk()→ Chunk
Obtain a Chunk for transmission.

We await the chunk’s future to be sure we are not overwriting data that is still being transmitted. If sending
failed, it is no longer being transmitted, and therefore safe to return the chunk.

Raises
asyncio.CancelledError – If the chunk’s send future is cancelled.

header_size: Final[int] = 64

send_chunk(chunk: Chunk, time_converter: TimeConverter, sensors: SensorSet)→ None
Send a chunk’s data and put it on the _chunks_queue.

async send_stop_heap()→ None
Send a Stop Heap over the spead2 transport.

class katgpucbf.xbgpu.bsend.Chunk(data: ndarray, saturated: ndarray, *, channel_offset: int,
timestamp_step: int)

Bases: object

An array of Frames.

98 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://docs.python.org/3/library/typing.html#typing.Final
https://docs.python.org/3/library/functions.html#int
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SensorSet
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

katgpucbf, Release 0.1.dev290+gf385556

Parameters

• data – Storage for tied-array-channelised-voltage data, with shape (n_frames, n_beams,
n_channels_per_substream, n_spectra_per_heap, COMPLEX) and dtype SEND_DTYPE.

• saturated – Storage for saturation counts, with shape (n_beams,) and dtype uint32.

• channel_offset – The first frequency channel processed.

• timestamp_step – Timestamp step between successive Frames in a chunk.

property present_ants: ndarray

Number of antennas present in the current beam sums.

This is a count for each Frame in the chunk. Setting this property updates the immediate SPEAD items in
the heaps. Much like timestamp, this should only be done when future is done.

send(send_stream: BSend, time_converter: TimeConverter, sensors: SensorSet)→ Future
Transmit a chunk’s heaps over a SPEAD stream.

This method returns immediately and sends the data asynchronously. Before modifying the chunk, first
await future.

property timestamp: int

Timestamp of the first heap.

Setting this property updates the timestamps stored in all the heaps. This should only be done when future
is done.

class katgpucbf.xbgpu.bsend.Frame(timestamp: ndarray, data: ndarray, *, channel_offset: int, present_ants:
ndarray)

Bases: object

Hold all data for heaps with a single timestamp.

It does not own its memory - the backing store is in Chunk . It keeps a cached spead2.send.
HeapReferenceListwith the heaps of the enabled beams, along with a version counter that is used to invalidate
it.

Parameters

• timestamp – Zero-dimensional array of dtype >u8 holding the timestamp

• data – Payload data for the frame with shape (n_beams, n_channels_per_substream, spec-
tra_per_heap, COMPLEX).

• channel_offset – The first frequency channel processed.

• present_ants – Zero-dimensional array of dtype >u8 holding the number of antennas
present in the Frame’s input data.

katgpucbf.xbgpu.bsend.make_stream(*, output_names: list[str], endpoints: list[Endpoint], interface: str, ttl:
int, use_ibv: bool, affinity: int, comp_vector: int, stream_config:
StreamConfig, buffers: Sequence[ndarray])→
spead2.send.asyncio.AsyncStream

Create asynchronous SPEAD stream for transmission.

This is architected to be a single send stream with multiple substreams, each corresponding to a tied-array-
channelised-voltage output data product. The endpoints need not be a contiguous list of multicast addresses.

20.1. Subpackages 99

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SensorSet
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#object
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.HeapReferenceList
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.HeapReferenceList
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream

katgpucbf, Release 0.1.dev290+gf385556

katgpucbf.xbgpu.correlation module

Module wrapping the ASTRON Tensor-Core Correlation Kernels in the MeerKAT katsdpsigproc framework.

Todo: Eventually modify the classes to support 4 and 16 bit input samples. The kernel supports this, but it is not
exposed to the reader. There is no use case for this at the moment, so this is a low priority.

class katgpucbf.xbgpu.correlation.Correlation(template: CorrelationTemplate, command_queue:
AbstractCommandQueue, n_batches: int)

Bases: Operation

Tensor-Core correlation kernel.

Specifies the shape of the input sample and output visibility buffers required by the kernel. The parameters
specified in the CorrelationTemplate object are used to determine the shape of the buffers. There is an outer-
most dimension called “batches”, over which the operation is parallelised. Not all batches need to be processed
every time: set the first_batch and last_batch attributes to control which batches will be computed.

The input sample buffer must have the shape: [n_batches][n_ants][channels][spectra_per_heap][polarisations]

There is an alignment requirement for spectra_per_heap due to the implementation details of the kernel. For
8-bit input mode, spectra_per_heap must be a multiple of 16.

Each input element is a complex 8-bit integer sample. numpy does not support 8-bit complex numbers, so the
dimensionality is extended by 1, with the last dimension sized 2 to represent the complexity.

With 8-bit input samples, the value -128i is not supported by the kernel as there is no 8-bit complex conjugate
representation of this number. Passing -128i into the kernel will produce incorrect values at the output.

The output visibility buffer must have the shape [channels][baselines][COMPLEX]. In 8-bit mode, each
element in this visibility matrix is a 32-bit integer value.

Calling this object does not directly update the output. Instead, it updates an intermediate buffer (called
mid_visibilities). To produce the output, call reduce(). This function can also flag data that was missing
during the accumulation, by writing a special value. This is controlled by the present_baselines slot, which
has one boolean entry per baseline (antenna pair).

Currently only 8-bit input mode is supported.

static get_baseline_index(ant1: int, ant2: int)→ int
Get index in the visibilities matrix for baseline (ant1, ant2).

The visibilities matrix indexing is as follows:

ant2 = 0 1 2 3 4
+---------------

ant1 = 0 | 00 01 03 06 10
1 | 02 04 07 11
2 | 05 08 12
3 | 09 13
4 | 14

This function requires that 𝑎𝑛𝑡2 ≥ 𝑎𝑛𝑡1

reduce()→ None
Finalise computation of the output visibilities from the internal buffer.

100 Chapter 20. katgpucbf package

https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.Operation
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

zero_visibilities()→ None
Zero all the values in the internal buffer.

class katgpucbf.xbgpu.correlation.CorrelationTemplate(context: AbstractContext, n_ants: int,
n_channels: int, n_spectra_per_heap: int,
input_sample_bits: int)

Bases: object

Template class for the Tensor-Core correlation kernel.

The template creates a Correlation that will run the compiled kernel. The parameters are used to compile the
kernel and by the Correlation to specify the shape of the memory buffers connected to this kernel.

The number of baselines calculated here is not the canonical way that it is done in radio astronomy:

𝑛𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠 =
𝑛𝑎𝑛𝑡𝑠 * (𝑛𝑎𝑛𝑡𝑠 + 1)

2

Because we have a dual-polarised telescope, we calculate four ‘baselines’ for each canonical baseline as calcu-
lated above, namely ℎ1ℎ2, ℎ1𝑣2, 𝑣1ℎ2, and 𝑣1𝑣2. So the list of baselines appears four times as long as you might
expect.

Parameters

• n_ants – The number of antennas that will be correlated. Each antennas is expected to
produce two polarisations.

• n_channels – The number of frequency channels to be processed.

• n_spectra_per_heap – The number of time samples to be processed per frequency chan-
nel.

• input_sample_bits – The number of bits per input sample. Only 8 bits is supported at the
moment.

instantiate(command_queue: AbstractCommandQueue, n_batches: int)→ Correlation
Create a Correlation using this template to build the kernel.

katgpucbf.xbgpu.correlation.MIN_COMPUTE_CAPABILITY = (7, 2)

Minimum CUDA compute capability needed for the kernel (with 8-bit samples)

katgpucbf.xbgpu.correlation.MISSING = array([-2147483648, 1], dtype=int32)

Magic value indicating missing data

katgpucbf.xbgpu.correlation.device_filter(device: AbstractDevice)→ bool
Determine whether a device is suitable for running the kernel.

katgpucbf.xbgpu.engine module

katgpucbf.xbgpu.main module

katgpucbf.xbgpu.output module

Data structures capturing static configuration of a single output stream.

class katgpucbf.xbgpu.output.BOutput(name: str, dst: Endpoint, pol: int)
Bases: Output

Static configuration for an output beam stream.

20.1. Subpackages 101

https://docs.python.org/3/library/constants.html#None
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractDevice
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/functions.html#int

katgpucbf, Release 0.1.dev290+gf385556

pol: int

class katgpucbf.xbgpu.output.Output(name: str, dst: Endpoint)
Bases: ABC

Static configuration for an output stream.

dst: Endpoint

name: str

class katgpucbf.xbgpu.output.XOutput(name: str, dst: Endpoint, heap_accumulation_threshold: int)
Bases: Output

Static configuration for an output baseline-correlation-products stream.

heap_accumulation_threshold: int

katgpucbf.xbgpu.recv module

SPEAD receiver utilities.

class katgpucbf.xbgpu.recv.Layout(n_ants: int, n_channels_per_substream: int, n_spectra_per_heap: int,
timestamp_step: int, sample_bits: int, heaps_per_fengine_per_chunk:
int)

Bases: BaseLayout

Parameters controlling the sizes of heaps and chunks.

Parameters

• n_ants (int) – The number of antennas that data will be received from

• n_channels_per_substream (int) – The number of frequency channels contained in the
stream.

• n_spectra_per_heap (int) – The number of time samples received per frequency channel.

• timestamp_step (int) – Each heap contains a timestamp. The timestamp between consec-
utive heaps changes depending on the FFT size and the number of time samples per channel.
This parameter defines the difference in timestamp values between consecutive heaps. This
parameter can be calculated from the array configuration parameters for power-of-two array
sizes, but is configurable to allow for greater flexibility during testing.

• sample_bits (int) – The number of bits per sample. Only 8 bits is supported at the mo-
ment.

• heaps_per_fengine_per_chunk (int) – Each chunk out of the SPEAD2 receiver will
contain multiple heaps from each antenna. This parameter specifies the number of heaps per
antenna that each chunk will contain.

property chunk_heaps: int

Number of heaps per chunk.

property heap_bytes

Calculate number of bytes in a heap based on layout parameters.

heaps_per_fengine_per_chunk: int

n_ants: int

102 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/abc.html#abc.ABC
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://katsdptelstate.readthedocs.io/en/latest/katsdptelstate.html#katsdptelstate.endpoint.Endpoint
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

katgpucbf, Release 0.1.dev290+gf385556

n_channels_per_substream: int

n_spectra_per_heap: int

sample_bits: int

timestamp_step: int

katgpucbf.xbgpu.recv.make_sensors(sensor_timeout: float)→ SensorSet
Create the sensors needed to hold receiver statistics.

Parameters
sensor_timeout – Time (in seconds) without updates before sensors for received data go into
error and sensors for missing data becoming nominal.

katgpucbf.xbgpu.recv.make_stream(layout: Layout, data_ringbuffer: ChunkRingbuffer, free_ringbuffer:
ChunkRingbuffer, src_affinity: int, max_active_chunks: int)→
ChunkRingStream

Create a SPEAD receiver stream.

Helper function with XB-engine-specific logic in it.

Parameters

• layout – Heap size and chunking parameters.

• data_ringbuffer – Output ringbuffer to which chunks will be sent.

• free_ringbuffer – Ringbuffer for holding chunks for recycling once they’ve been used.

• src_affinity – CPU core affinity for the worker thread.

• max_active_chunks – Maximum number of chunks under construction.

async katgpucbf.xbgpu.recv.recv_chunks(stream: ChunkRingStream, layout: Layout, sensors: SensorSet,
time_converter: TimeConverter)→ AsyncGenerator[Chunk,
None]

Retrieve chunks from the ringbuffer, updating metrics as they are received.

The returned chunks are yielded from this asynchronous generator.

Parameters

• stream – Stream object handling reception of F-engine data.

• layout – Structure of the stream.

• sensors – Sensor set containing at least the sensors created by make_sensors().

• time_converter – Converter to turn data timestamps into sensor timestamps.

katgpucbf.xbgpu.xsend module

Module for sending baseline correlation products onto the network.

class katgpucbf.xbgpu.xsend.Heap(context: AbstractContext, n_channels_per_substream: int, n_baselines:
int, channel_offset: int)

Bases: object

Hold all the data for a heap.

The content of the heap can change, but the class is frozen.

20.1. Subpackages 103

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SensorSet
https://spead2.readthedocs.io/en/latest/py-recv-chunk.html#spead2.recv.asyncio.ChunkRingbuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SensorSet
https://docs.python.org/3/library/collections.abc.html#collections.abc.AsyncGenerator
https://docs.python.org/3/library/constants.html#None
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

katgpucbf, Release 0.1.dev290+gf385556

property timestamp: int

class katgpucbf.xbgpu.xsend.XSend(output_name: str, n_ants: int, n_channels: int,
n_channels_per_substream: int, dump_interval_s: float,
send_rate_factor: float, channel_offset: int, context: AbstractContext,
stream_factory: Callable[[StreamConfig, Sequence[ndarray]],
spead2.send.asyncio.AsyncStream], n_send_heaps_in_flight: int = 5,
packet_payload: int = 8192, tx_enabled: bool = False)

Bases: object

Class for turning baseline correlation products into SPEAD heaps and transmitting them.

This class creates a queue of buffers that can be sent out onto the network. To get one of these buffers call
get_free_heap() - it will return a buffer. Once the necessary data has been copied to the buffer and it is ready
to be sent onto the network, pass it back to this object using send_heap(). This object will create a limited
number of buffers and keep recycling them - avoiding any memory allocation at runtime.

This has been designed to run in an asyncio loop, and get_free_heap() function makes sure that the next
buffer in the queue is not in flight before returning.

To allow this class to be used with multiple transports, the constructor takes a factory function to create the
stream.

Parameters

• n_ants – The number of antennas that have been correlated.

• n_channels – The total number of channels across all X-Engines. Must be a multiple of
n_channels_per_substream.

• n_channels_per_substream – The number of frequency channels contained per sub-
stream.

• dump_interval_s – A new heap is transmitted every dump_interval_s seconds. Set to zero
to send as fast as possible.

• send_rate_factor – Configure the spead2 sender with a rate proportional to this factor.
This value is intended to dictate a data transmission rate slightly higher/faster than the ADC
rate.

Note: A factor of zero (0) tells the sender to transmit as fast as possible.

• channel_offset – Fixed value to be included in the SPEAD heap indicating the lowest
channel value transmitted by this heap. Must be a multiple of n_channels_per_substream.

• context – All buffers to be transmitted will be created from this context.

• stream_factory – Callback function that will create the spead2 stream. It is passed the
stream configuration and the memory buffers.

• n_send_heaps_in_flight – Number of buffers that will be queued at any one time. I don’t
see any need for this to be configurable, the data rates are likely too low for it to be an issue.
I have put it here more to be explicit than anything else. This argument is optional.

• packet_payload – Size in bytes for output packets (baseline correlation products payload
only, headers and padding are then added to this).

• tx_enabled – Start with output transmission enabled.

104 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractContext
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

katgpucbf, Release 0.1.dev290+gf385556

async get_free_heap()→ Heap
Return a heap from the internal fifo queue when one is available.

There are a limited number of heaps in existence and they are all stored with a future object. If the future
is complete, the buffer is not being used for sending and it will return the heap immediately. If the future is
still busy, this function will wait asynchronously for the future to be done.

This function is compatible with asyncio.

Returns
Free heap

Return type
heap

header_size: Final[int] = 64

send_heap(heap: Heap)→ None
Take in a buffer and send it as a SPEAD heap.

This function is non-blocking. There is no guarantee that a heap has been sent by the time the function
completes.

Parameters
heap – Heap to send

async send_stop_heap()→ None
Send a Stop Heap over the spead2 transport.

katgpucbf.xbgpu.xsend.make_stream(*, output_name: str, dest_ip: str, dest_port: int, interface_ip: str, ttl:
int, use_ibv: bool, affinity: int, comp_vector: int, stream_config:
StreamConfig, buffers: Sequence[ndarray])→
spead2.send.asyncio.AsyncStream

Produce a UDP spead2 stream used for transmission.

Module contents

20.2 Submodules

20.2.1 katgpucbf.curand_helpers module

Helpers to initialise random state with curand.

class katgpucbf.curand_helpers.RandomStateBuilder(context: <Mock name='mock.Context'
id='139785445150288'>)

Bases: object

Build array of initialised random states for curand.

make_states(shape: tuple[int, ...], seed: int, sequence_first: int, sequence_step: int = 1, offset: int = 0)→
DeviceArray

Create a multi-dimensional array of random states.

This method is not particularly efficient. It’s intended to be used just during startup, after which the random
states will be persisted in global memory and reused.

20.2. Submodules 105

https://docs.python.org/3/library/typing.html#typing.Final
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.accel.DeviceArray

katgpucbf, Release 0.1.dev290+gf385556

20.2.2 katgpucbf.mapped_array module

20.2.3 katgpucbf.meerkat module

Constants applicable to the MeerKAT / MeerKAT Extension telescope.

class katgpucbf.meerkat.Band(long_name: str, adc_sample_rate: float, centre_frequency: float)
Bases: object

Holds presets for a known band.

adc_sample_rate: float

centre_frequency: float

long_name: str

20.2.4 katgpucbf.monitor module

Monitor classes allowing for rudimentary performance monitoring.

Queues in the form of asyncio.Queue are used for synchronisation between coroutines in katgpucbf.fgpu, but we
may like to know a bit more about what’s happening to them as items are pushed and popped. These metrics help us to
see what bottlenecks there are, because if the queues get full (or the “free” queues get empty) it will result in dropped
packets.

class katgpucbf.monitor.FileMonitor(filename: str)
Bases: Monitor

Write events to a file.

The file contains JSON-formatted records, one per line. Each record contains time and type keys, with addi-
tional type-specific information corresponding to the arguments to the notification functions.

close()→ None
Close the output file cleanly.

event_qsize(name: str, qsize: int, maxsize: int)→ None
Report the size and capacity of a queue.

The queue name has current size qsize and capacity maxsize. All calls with the same name must report the
same maxsize.

event_qsize_delta(name: str, delta: int)→ None
Report addition/removal of items from a queue.

The queue name has delta new items in it (or removed if delta is negative). This is an alternative to using
event_qsize() when there is no easy way to obtain the absolute size of the queue. There must have been
a previous call to event_qsize() to specify the initial capacity.

event_state(name: str, state: str)→ None
Report the current state of a task.

The state other is conventional when no more specific information is available.

106 Chapter 20. katgpucbf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

class katgpucbf.monitor.Monitor

Bases: ABC

Base class for performance monitors.

Subclasses can create Queue objects which report their size when it changes via the mechanism defined in the
derived Monitor class.

Each subclass will need to override the abstract methods to record the performance events.

close()→ None
Close the Monitor.

In the base class this does nothing, but if derived classes implement something that needs to close cleanly
(such as an output file), then this function can be overridden to do that. It is called when you __exit__
from using the Monitor as a context manager.

abstract event_qsize(name: str, qsize: int, maxsize: int)→ None
Report the size and capacity of a queue.

The queue name has current size qsize and capacity maxsize. All calls with the same name must report the
same maxsize.

abstract event_qsize_delta(name: str, delta: int)→ None
Report addition/removal of items from a queue.

The queue name has delta new items in it (or removed if delta is negative). This is an alternative to using
event_qsize() when there is no easy way to obtain the absolute size of the queue. There must have been
a previous call to event_qsize() to specify the initial capacity.

abstract event_state(name: str, state: str)→ None
Report the current state of a task.

The state other is conventional when no more specific information is available.

make_queue(name: str, maxsize: int = 0)→ Queue
Create a Queue that reports its size via this Monitor.

time()→ float
Get a timestamp, relative to the creation time of the monitor.

with_state(name: str, state: str, return_state: str = 'other')→ Generator[None, None, None]
Set a state for the duration of a block.

class katgpucbf.monitor.NullMonitor

Bases: Monitor

A do-nothing monitor that presents the required interface.

event_qsize(name: str, qsize: int, maxsize: int)→ None
Report the size and capacity of a queue.

The queue name has current size qsize and capacity maxsize. All calls with the same name must report the
same maxsize.

event_qsize_delta(name: str, delta: int)→ None
Report addition/removal of items from a queue.

The queue name has delta new items in it (or removed if delta is negative). This is an alternative to using
event_qsize() when there is no easy way to obtain the absolute size of the queue. There must have been
a previous call to event_qsize() to specify the initial capacity.

20.2. Submodules 107

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

event_state(name: str, state: str)→ None
Report the current state of a task.

The state other is conventional when no more specific information is available.

make_queue(name: str, maxsize: int = 0)→ Queue
Create a Queue that reports its size via this Monitor.

class katgpucbf.monitor.Queue(monitor: Monitor, name: str, maxsize: int = 0)
Bases: Queue

Extend asyncio.Queue with performance monitoring.

The only functionality added by any of the overridden functions is to call event_qsize() upon put/get events,
transmitting an event to the parent Monitor object, alerting it about the change.

async get()→ Any
Remove and return an item from the queue.

If queue is empty, wait until an item is available.

get_nowait()→ Any
Remove and return an item from the queue.

Return an item if one is immediately available, else raise QueueEmpty.

async put(item: object)→ None
Put an item into the queue.

Put an item into the queue. If the queue is full, wait until a free slot is available before adding item.

put_nowait(item: object)→ None
Put an item into the queue without blocking.

If no free slot is immediately available, raise QueueFull.

20.2.5 katgpucbf.queue_item module

Provide QueueItem .

class katgpucbf.queue_item.QueueItem(timestamp: int = 0)
Bases: object

Queue Item for use in synchronisation between command queues.

Derived classes will have allocated memory regions associated with them, appropriately sized for input or output
data. Actions (whether kernel executions or copies to or from the device) for these memory regions are initiated,
and then an event marker is added to the list in some variation of this manner:

my_item.add_marker(command_queue)

The item can then be passed through a queue to the next stage in the program, which waits for the operations
to be complete using enqueue_wait_for_events() or async_wait_for_events(). This indicates that the
operation is complete and the next thing can be done with whatever data is in that region of memory.

add_marker(command_queue: AbstractCommandQueue)→ AbstractEvent
Indicate that previous work on command_queue uses this item.

Future calls to enqueue_wait_for_events() or async_wait_for_events() will wait for all work
issued to command_queue up to this point.

108 Chapter 20. katgpucbf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractEvent

katgpucbf, Release 0.1.dev290+gf385556

The associated event is returned.

async async_wait_for_events()→ None
Wait for all events in the list of events to be complete.

enqueue_wait_for_events(command_queue: AbstractCommandQueue)→ None
Block execution of a command queue until all of this item’s events are finished.

Future work enqueued to command_queue will be sequenced after any work associated with the stored
events.

property events: tuple[AbstractEvent, ...]

Get a copy of the currently registered events.

reset(timestamp: int = 0)→ None
Reset the item’s timestamp.

Subclasses should override this to reset other state. It is called by the constructor so it can also be used for
initialisation.

timestamp: int

Timestamp of the item.

20.2.6 katgpucbf.recv module

Shared utilities for receiving SPEAD data.

class katgpucbf.recv.BaseLayout

Bases: ABC

Abstract base class for chunk layouts to derive from.

property chunk_bytes: int

Number of bytes per chunk.

abstract property chunk_heaps: int

Number of heaps per chunk.

chunk_place(user_data: ndarray)→ LowLevelCallable
Generate low-level code for placing heaps in chunks.

Parameters
user_data – Data to pass to the placement callback

abstract property heap_bytes: int

Number of payload bytes per heap.

class katgpucbf.recv.Chunk(self: spead2._spead2.recv.Chunk, **kwargs)
Bases: Chunk

Collection of heaps passed to the GPU at one time.

It extends the spead2 base class to store a timestamp (computed from the chunk ID when the chunk is received),
and optionally store a vkgdr device array.

When used as a context manager, it will call recycle() on exit.

device: object

20.2. Submodules 109

https://docs.python.org/3/library/constants.html#None
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractCommandQueue
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://katsdpsigproc.readthedocs.io/en/latest/katsdpsigproc.html#katsdpsigproc.abc.AbstractEvent
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

katgpucbf, Release 0.1.dev290+gf385556

recycle()→ None
Return the chunk to the owning stream/group.

sink: ReferenceType

timestamp: int

katgpucbf.recv.EVICTION_MODE = <EvictionMode.LOSSY: 0>

Eviction mode to use when some streams fall behind

katgpucbf.recv.RX_SENSOR_TIMEOUT_CHUNKS = 10

Number of chunks before rx sensor status changes

katgpucbf.recv.RX_SENSOR_TIMEOUT_MIN = 1.0

Minimum rx sensor status timeout in seconds

class katgpucbf.recv.StatsCollector(counter_map: ~collections.abc.Mapping[str, tuple[str, str]],
labelnames: ~collections.abc.Iterable[str] = (), namespace: str = '',
registry: ~prometheus_client.registry.CollectorRegistry =
<prometheus_client.registry.CollectorRegistry object>)

Bases: Collector

Collect statistics from spead2 streams as Prometheus metrics.

add_stream(stream: ChunkRingStream | ChunkStreamGroupMember, labels: Iterable[str] = ())→ None
Register a new stream.

If the collector was constructed with a non-empty labelnames, then labelsmust contain the same number
of elements to provide the labels for the metrics that this stream will update.

Warning: Calling this more than once with the same stream will cause that stream’s statistics to be
counted multiple times.

collect()→ Iterable[Metric]
Implement Prometheus’ Collector interface.

update()→ None
Update the internal totals from the streams.

This is done automatically by collect(), but it can also be called explicitly. This may be useful to do just
before a stream goes out of scope, to ensure that counter updates since the last scrape are not lost when the
stream is garbage collected.

katgpucbf.recv.add_reader(stream: ChunkRingStream | ChunkStreamGroupMember, *, src: str | list[tuple[str,
int]], interface: str | None, ibv: bool, comp_vector: int, buffer: int)→ None

Connect a stream to an underlying transport.

See the documentation for Engine for an explanation of the parameters.

katgpucbf.recv.make_stream(*, layout: BaseLayout, spead_items: list[int], max_active_chunks: int,
data_ringbuffer: ChunkRingbuffer, free_ringbuffer: ChunkRingbuffer, affinity:
int, stream_stats: list[str], user_data: ndarray, max_heap_extra: int = 0,
**kwargs: Any)→ ChunkRingStream

Create a SPEAD receiver stream.

Parameters

• layout – Heap size and chunking parameters.

110 Chapter 20. katgpucbf package

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://spead2.readthedocs.io/en/latest/py-recv-chunk.html#spead2.recv.asyncio.ChunkRingbuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

katgpucbf, Release 0.1.dev290+gf385556

• spead_items – List of SPEAD item IDs to be expected in the heap headers.

• max_active_chunks – Maximum number of chunks under construction.

• data_ringbuffer – Output ringbuffer to which chunks will be sent.

• free_ringbuffer – Ringbuffer for holding chunks for recycling once they’ve been used.

• affinity – CPU core affinity for the worker thread (negative to not set an affinity).

• stream_stats – Stats to hook up to prometheus.

• user_data – Data to pass to the chunk placement callback

• max_heap_extra – Maximum non-payload data written by the place callback

• kwargs – Other keyword arguments are passed to spead2.recv.StreamConfig.

katgpucbf.recv.make_stream_group(*, layout: BaseLayout, spead_items: list[int], max_active_chunks: int,
data_ringbuffer: ChunkRingbuffer, free_ringbuffer: ChunkRingbuffer,
affinity: Sequence[int], stream_stats: list[str], user_data: ndarray,
max_heap_extra: int = 0, **kwargs: Any)→ ChunkStreamRingGroup

Create a group of SPEAD receiver streams.

Parameters

• layout – Heap size and chunking parameters.

• spead_items – List of SPEAD item IDs to be expected in the heap headers.

• max_active_chunks – Maximum number of chunks under construction.

• data_ringbuffer – Output ringbuffer to which chunks will be sent.

• free_ringbuffer – Ringbuffer for holding chunks for recycling once they’ve been used.

• affinity – CPU core affinities for the worker threads (negative to not set an affinity). The
length of this list determines the number of streams to create.

• stream_stats – Stats to hook up to prometheus.

• user_data – User data to pass to the chunk callback. It must have a field called stats_base,
which will be filled in appropriately (modifying the argument).

• max_heap_extra – Maximum non-payload data written by the place callback

• kwargs – Other keyword arguments are passed to spead2.recv.StreamConfig.

20.2.7 katgpucbf.ringbuffer module

Wraps spead2.recv.ChunkRingbuffer with monitoring capabilities.

class katgpucbf.ringbuffer.ChunkRingbuffer(self: spead2._spead2.recv.ChunkRingbuffer, maxsize: int)
Bases: ChunkRingbuffer

Wraps spead2.recv.ChunkRingbuffer with monitoring capabilities.

When waiting for the next heap, it uses Monitor.with_state() to indicate that heaps are being waited for.
Whenever a heap is retrieved, it updates the size of the queue.

async get()→ Chunk
Override base class method to use the monitor.

20.2. Submodules 111

https://spead2.readthedocs.io/en/latest/py-recv.html#spead2.recv.StreamConfig
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://spead2.readthedocs.io/en/latest/py-recv-chunk.html#spead2.recv.asyncio.ChunkRingbuffer
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://spead2.readthedocs.io/en/latest/py-recv-chunk-group.html#spead2.recv.ChunkStreamRingGroup
https://spead2.readthedocs.io/en/latest/py-recv.html#spead2.recv.StreamConfig
https://spead2.readthedocs.io/en/latest/py-recv-chunk.html#spead2.recv.ChunkRingbuffer
https://docs.python.org/3/library/functions.html#int
https://spead2.readthedocs.io/en/latest/py-recv-chunk.html#spead2.recv.asyncio.ChunkRingbuffer
https://spead2.readthedocs.io/en/latest/py-recv-chunk.html#spead2.recv.ChunkRingbuffer

katgpucbf, Release 0.1.dev290+gf385556

20.2.8 katgpucbf.send module

Shared utilities for sending data over SPEAD.

class katgpucbf.send.DescriptorSender(stream: spead2.send.asyncio.AsyncStream, descriptors: Heap,
interval: float, first_interval: float | None = None, *, substreams:
Iterable[int] = (0,))

Bases: object

Manage sending descriptors at regular intervals.

The descriptors are first sent once immediately, then after first_interval seconds, then every interval seconds.
Using a different first_interval makes it possible to stagger different senders so that their descriptors do not all
arrive at a common receiver at the same time.

The descriptors are sent with zero rate, which means they will not affect the timing of other packets in the same
stream.

Parameters

• stream – The stream to which the descriptor will be sent. It will be sent to all substreams
simultaneously.

• descriptors – The descriptor heap to send.

• interval – Interval (in seconds) between sending descriptors.

• first_interval – Delay (in seconds) immediately after starting. If not specified, it defaults
to interval.

• substreams – Substream indices to which descriptors are sent. If not specified, send only
to the first substream.

halt()→ None
Request run() to stop, but do not wait for it.

async run()→ None
Send the descriptors indefinitely (use halt() or cancel to stop).

20.2.9 katgpucbf.spead module

Common SPEAD-related constants and helper function.

katgpucbf.spead.DEFAULT_PORT = 7148

Default UDP port

katgpucbf.spead.DIGITISER_STATUS_SATURATION_COUNT_SHIFT = 32

First bit position in digitiser status SPEAD item for ADC saturation count

katgpucbf.spead.DIGITISER_STATUS_SATURATION_FLAG_BIT = 1

Bit position in digitiser_status SPEAD item for ADC saturation flag

katgpucbf.spead.FLAVOUR = <spead2._spead2.Flavour object>

SPEAD flavour used for all send streams

katgpucbf.spead.IMMEDIATE_DTYPE = dtype('>u8')

dtype for items that need to be immediate yet passed by reference

katgpucbf.spead.IMMEDIATE_FORMAT = [('u', 48)]

Format for immediate items

112 Chapter 20. katgpucbf package

https://spead2.readthedocs.io/en/latest/py-send.html#spead2.send.asyncio.AsyncStream
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

katgpucbf.spead.make_immediate(id: int, value: Any)→ Item
Synthesize an immediate item.

Parameters

• id – The SPEAD identifier for the item

• value – The value of the item

20.2.10 katgpucbf.utils module

A collection of utility functions for katgpucbf.

class katgpucbf.utils.DeviceStatusSensor(target: SensorSet, name: str = 'device-status', description: str
= 'Overall engine health')

Bases: SimpleAggregateSensor[DeviceStatus]

Summary sensor for quickly ascertaining device status.

This takes its value from the worst status of its target set of sensors, so it’s quick to identify if there’s something
wrong, or if everything is good.

aggregate_add(sensor: Sensor[_T], reading: Reading[_T])→ bool
Update internal state with an additional reading.

Returns
True if the new reading should result in a state update.

Return type
bool

aggregate_compute()→ tuple[Status, DeviceStatus]
Compute aggregate status and value from the internal state.

aggregate_remove(sensor: Sensor[_T], reading: Reading[_T])→ bool
Update internal state by removing a reading.

Returns
True if removing the reading should result in a state update.

Return type
bool

filter_aggregate(sensor: Sensor)→ bool
Decide whether another sensor is part of the aggregation.

Users can override this function to exclude certain categories of sensors, such as other aggregates, to prevent
circular references.

Returns
True if sensor should be included in calculation of the aggregate, False if not.

Return type
bool

update_aggregate(updated_sensor: Sensor[_T] | None, reading: Reading[_T] | None, old_reading:
Reading[_T] | None)→ Reading[DeviceStatus] | None

Update the aggregated sensor.

The user is required to override this function, which must return the updated Reading (i.e. value, status
and timestamp) which will be reflected in the Reading of the aggregated sensor.

20.2. Submodules 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://spead2.readthedocs.io/en/latest/py-items.html#spead2.Item
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SensorSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SimpleAggregateSensor
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.core.DeviceStatus
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Sensor
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Reading
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Sensor.Status
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.core.DeviceStatus
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Sensor
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Reading
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Sensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Sensor
https://docs.python.org/3/library/constants.html#None
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Reading
https://docs.python.org/3/library/constants.html#None
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Reading
https://docs.python.org/3/library/constants.html#None
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Reading
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.core.DeviceStatus
https://docs.python.org/3/library/constants.html#None

katgpucbf, Release 0.1.dev290+gf385556

Parameters

• updated_sensor – The sensor in the target SensorSet which has changed in some way.

• reading – The current reading of the updated_sensor. This is None if the sensor is being
removed from the set.

• old_reading – The previous reading of the updated_sensor. This is None if the sensor is
being added to the set.

Returns
The reading (value, status, timestamp) that should be shown by the AggregatedSensor as a
result of the change. If None is returned, the sensor’s reading is not modified.

Return type
Optional[Reading]

class katgpucbf.utils.TimeConverter(sync_time: float, adc_sample_rate: float)
Bases: object

Convert times between UNIX timestamps and ADC sample counts.

Note that because UNIX timestamps are handled as 64-bit floats, they are only accurate to roughly microsecond
precision, and will not round-trip precisely.

Parameters

• sync_time – UNIX timestamp corresponding to ADC timestamp 0

• adc_sample_rate – Number of ADC samples per second

• todo:: (..) – This does not yet handle leap-seconds correctly.

adc_to_unix(samples: float)→ float
Convert an ADC sample count to a UNIX timstamp.

unix_to_adc(timestamp: float)→ float
Convert a UNIX timestamp to an ADC sample count.

class katgpucbf.utils.TimeoutSensorStatusObserver(sensor: Sensor, timeout: float, new_status: Status)
Bases: object

Change the status of a sensor if it doesn’t receive an update for a given time.

Do not directly attach or detach this observer from the sensor (it does this internally). It is not necessary to retain
a reference to the object unless you wish to interact with it later (for example, by calling cancel()).

It must be constructed while there is a running event loop.

cancel()→ None
Detach from the sensor and make no further updates to it.

katgpucbf.utils.add_gc_stats()→ None
Add Prometheus metrics for garbage collection timing.

It is only safe to call this once.

katgpucbf.utils.add_signal_handlers(server: DeviceServer)→ None
Arrange for clean shutdown on SIGINT (Ctrl-C) or SIGTERM.

katgpucbf.utils.add_time_sync_sensors(sensors: SensorSet)→ Task
Add a number of sensors to a device server to track time synchronisation.

This must be called with an event loop running. It returns a task that keeps the sensors periodically updated.

114 Chapter 20. katgpucbf package

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Sensor
https://docs.python.org/3/library/functions.html#float
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Sensor.Status
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.server.DeviceServer
https://docs.python.org/3/library/constants.html#None
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.SensorSet

katgpucbf, Release 0.1.dev290+gf385556

katgpucbf.utils.comma_split(base_type: Callable[[str], _T], count: int | None = None, allow_single=False)
→ Callable[[str], list[_T]]

Return a function to split a comma-delimited str into a list of type _T.

This function is used to parse lists of CPU core numbers, which come from the command-line as comma-
separated strings, but are obviously more useful as a list of ints. It’s generic enough that it could process lists of
other types as well though if necessary.

Parameters

• base_type – The base type of thing you expect in the list, e.g. int, float.

• count – How many of them you expect to be in the list. None means the list could be any
length.

• allow_single – If true (defaults to false), allow a single value to be used when count is
greater than 1. In this case, it will be repeated count times.

katgpucbf.utils.gaussian_dtype(bits: int)→ dtype
Get numpy dtype for a Gaussian (complex) integer.

Parameters
bits – Number of bits in each real component

katgpucbf.utils.parse_source(value: str)→ list[tuple[str, int]] | str
Parse a string into a list of IP endpoints.

katgpucbf.utils.steady_state_timestamp_sensor()→ Sensor[int]
Create steady-state-timestamp sensor.

20.3 Module contents

katgpucbf.DEFAULT_PACKET_PAYLOAD_BYTES: Final = 8192

Biggest power of 2 that fits in a jumbo MTU. A power of 2 isn’t required but it can be convenient to have packet
boundaries align with the natural boundaries in the payload (for antenna-channelised-voltage output). Bigger is
better to minimise the number of packets/second to process.

katgpucbf.DEFAULT_TTL: Final = 4

Default TTL for spead multicast transmission

katgpucbf.MIN_SENSOR_UPDATE_PERIOD: Final = 1.0

Minimum update period (in seconds) for katcp sensors where the underlying value may update extremely rapidly.

20.3. Module contents 115

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://aiokatcp.readthedocs.io/en/latest/aiokatcp.html#aiokatcp.sensor.Sensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Final
https://docs.python.org/3/library/typing.html#typing.Final
https://docs.python.org/3/library/typing.html#typing.Final

katgpucbf, Release 0.1.dev290+gf385556

116 Chapter 20. katgpucbf package

BIBLIOGRAPHY

[Merry2023] Bruce Merry, “Efficient channelization on a graphics processing unit,” J. Astron. Telesc. Instrum. Syst.
9(3) 038001 (12 July 2023). https://doi.org/10.1117/1.JATIS.9.3.038001

[Pri] Danny C. Price. Spectrometers and polyphase filterbanks in radio astronomy. arXiv:1607.03579.

117

https://doi.org/10.1117/1.JATIS.9.3.038001
https://arxiv.org/abs/1607.03579

katgpucbf, Release 0.1.dev290+gf385556

118 Bibliography

PYTHON MODULE INDEX

k
katgpucbf, 115
katgpucbf.curand_helpers, 105
katgpucbf.dsim, 80
katgpucbf.dsim.descriptors, 69
katgpucbf.dsim.main, 69
katgpucbf.dsim.send, 70
katgpucbf.dsim.server, 72
katgpucbf.dsim.shared_array, 73
katgpucbf.dsim.signal, 73
katgpucbf.fgpu, 94
katgpucbf.fgpu.compute, 80
katgpucbf.fgpu.ddc, 83
katgpucbf.fgpu.delay, 84
katgpucbf.fgpu.output, 87
katgpucbf.fgpu.pfb, 89
katgpucbf.fgpu.postproc, 91
katgpucbf.fgpu.recv, 92
katgpucbf.fgpu.send, 93
katgpucbf.fsim, 96
katgpucbf.fsim.main, 94
katgpucbf.meerkat, 106
katgpucbf.monitor, 106
katgpucbf.queue_item, 108
katgpucbf.recv, 109
katgpucbf.ringbuffer, 111
katgpucbf.send, 112
katgpucbf.spead, 112
katgpucbf.utils, 113
katgpucbf.xbgpu, 105
katgpucbf.xbgpu.beamform, 96
katgpucbf.xbgpu.bsend, 97
katgpucbf.xbgpu.correlation, 100
katgpucbf.xbgpu.output, 101
katgpucbf.xbgpu.recv, 102
katgpucbf.xbgpu.xsend, 103

119

katgpucbf, Release 0.1.dev290+gf385556

120 Python Module Index

INDEX

Symbols
--calibrate

command line option, 65
--calibrate-repeat

command line option, 65
--dsim-server

command line option, 64
--fgpu-server

command line option, 64
--high

command line option, 64
--image

command line option, 64
--interval

command line option, 64
--low

command line option, 64
--max-comparisons

command line option, 64
--servers

command line option, 64
--step

command line option, 64
-n

command line option, 64

A
a (katgpucbf.dsim.signal.CombinedSignal attribute), 74
AbstractDelayModel (class in katgpucbf.fgpu.delay),

84
adc_sample_rate (katgpucbf.meerkat.Band attribute),

106
adc_to_unix() (katgpucbf.utils.TimeConverter

method), 114
add() (katgpucbf.fgpu.delay.MultiDelayModel method),

86
add_gc_stats() (in module katgpucbf.utils), 114
add_marker() (katgpucbf.queue_item.QueueItem

method), 108
add_reader() (in module katgpucbf.recv), 110
add_signal_handlers() (in module katgpucbf.utils),

114

add_stream() (katgpucbf.recv.StatsCollector method),
110

add_time_sync_sensors() (in module katg-
pucbf.utils), 114

aggregate_add() (katgpucbf.utils.DeviceStatusSensor
method), 113

aggregate_compute() (katg-
pucbf.utils.DeviceStatusSensor method),
113

aggregate_remove() (katg-
pucbf.utils.DeviceStatusSensor method),
113

AlignedDelayModel (class in katgpucbf.fgpu.delay), 85
amplitude (katgpucbf.dsim.signal.Periodic attribute),

76
async_main() (in module katgpucbf.dsim.main), 69
async_main() (in module katgpucbf.fsim.main), 95
async_wait_for_events() (katg-

pucbf.queue_item.QueueItem method), 109
autotune() (katgpucbf.fgpu.ddc.DDCTemplate class

method), 84
autotune_version (katgpucbf.fgpu.ddc.DDCTemplate

attribute), 84

B
b (katgpucbf.dsim.signal.CombinedSignal attribute), 74
Band (class in katgpucbf.meerkat), 106
BaseLayout (class in katgpucbf.recv), 109
Beamform (class in katgpucbf.xbgpu.beamform), 96
BeamformTemplate (class in katg-

pucbf.xbgpu.beamform), 97
bind() (katgpucbf.fgpu.compute.Compute method), 81
BOutput (class in katgpucbf.xbgpu.output), 101
BSend (class in katgpucbf.xbgpu.bsend), 97
buffer() (katgpucbf.fgpu.compute.Compute method),

81
BUILD_STATE (katgpucbf.dsim.server.DeviceServer at-

tribute), 72

C
cancel() (katgpucbf.utils.TimeoutSensorStatusObserver

method), 114

121

katgpucbf, Release 0.1.dev290+gf385556

centre_frequency (katg-
pucbf.fgpu.output.NarrowbandOutput at-
tribute), 87

centre_frequency (katgpucbf.meerkat.Band attribute),
106

channels (katgpucbf.fgpu.output.Output attribute), 88
Chunk (class in katgpucbf.fgpu.recv), 92
Chunk (class in katgpucbf.fgpu.send), 93
Chunk (class in katgpucbf.recv), 109
Chunk (class in katgpucbf.xbgpu.bsend), 98
chunk_bytes (katgpucbf.recv.BaseLayout property), 109
chunk_heaps (katgpucbf.fgpu.recv.Layout property), 92
chunk_heaps (katgpucbf.recv.BaseLayout property), 109
chunk_heaps (katgpucbf.xbgpu.recv.Layout property),

102
chunk_place() (katgpucbf.recv.BaseLayout method),

109
chunk_samples (katgpucbf.fgpu.recv.Layout attribute),

92
CHUNK_SIZE (in module katgpucbf.dsim.signal), 73
ChunkRingbuffer (class in katgpucbf.ringbuffer), 111
cleanup (katgpucbf.fgpu.send.Chunk attribute), 93
close() (katgpucbf.dsim.shared_array.SharedArray

method), 73
close() (katgpucbf.monitor.FileMonitor method), 106
close() (katgpucbf.monitor.Monitor method), 107
collect() (katgpucbf.recv.StatsCollector method), 110
Comb (class in katgpucbf.dsim.signal), 74
combine (katgpucbf.dsim.signal.CombinedSignal at-

tribute), 74
CombinedSignal (class in katgpucbf.dsim.signal), 74
comma_split() (in module katgpucbf.utils), 114
command line option

--calibrate, 65
--calibrate-repeat, 65
--dsim-server, 64
--fgpu-server, 64
--high, 64
--image, 64
--interval, 64
--low, 64
--max-comparisons, 64
--servers, 64
--step, 64
-n, 64

Compute (class in katgpucbf.fgpu.compute), 80
ComputeTemplate (class in katgpucbf.fgpu.compute), 82
configure() (katgpucbf.fgpu.ddc.DDC method), 83
Constant (class in katgpucbf.dsim.signal), 74
Correlation (class in katgpucbf.xbgpu.correlation),

100
CorrelationTemplate (class in katg-

pucbf.xbgpu.correlation), 101

create() (katgpucbf.dsim.send.HeapSet class method),
70

create() (katgpucbf.dsim.shared_array.SharedArray
class method), 73

create_config() (in module katg-
pucbf.dsim.descriptors), 69

create_descriptors_heap() (in module katg-
pucbf.dsim.descriptors), 69

CW (class in katgpucbf.dsim.signal), 73

D
DDC (class in katgpucbf.fgpu.ddc), 83
ddc_taps (katgpucbf.fgpu.output.NarrowbandOutput at-

tribute), 87
DDCTemplate (class in katgpucbf.fgpu.ddc), 84
decimation (katgpucbf.fgpu.compute.NarrowbandConfig

attribute), 82
decimation (katgpucbf.fgpu.output.NarrowbandOutput

attribute), 87
decimation (katgpucbf.fgpu.output.WidebandOutput

property), 88
DEFAULT_PACKET_PAYLOAD_BYTES (in module katg-

pucbf), 115
DEFAULT_PORT (in module katgpucbf.spead), 112
DEFAULT_TTL (in module katgpucbf), 115
Delay (class in katgpucbf.dsim.signal), 75
delay (katgpucbf.dsim.signal.Delay attribute), 75
descriptor_heap (katgpucbf.xbgpu.bsend.BSend

attribute), 98
DescriptorSender (class in katgpucbf.send), 112
device (katgpucbf.fgpu.recv.Chunk attribute), 92
device (katgpucbf.recv.Chunk attribute), 109
device_filter() (in module katg-

pucbf.xbgpu.correlation), 101
DeviceServer (class in katgpucbf.dsim.server), 72
DeviceStatusSensor (class in katgpucbf.utils), 113
DIG_SAMPLE_BITS_VALID (in module katgpucbf.fgpu),

94
DIGITISER_STATUS_SATURATION_COUNT_SHIFT (in

module katgpucbf.spead), 112
DIGITISER_STATUS_SATURATION_FLAG_BIT (in mod-

ule katgpucbf.spead), 112
dst (katgpucbf.fgpu.output.Output attribute), 88
dst (katgpucbf.xbgpu.output.Output attribute), 102

E
enable_substream() (katgpucbf.xbgpu.bsend.BSend

method), 98
enqueue_wait_for_events() (katg-

pucbf.queue_item.QueueItem method), 109
ensure_all_bound() (katg-

pucbf.fgpu.compute.Compute method), 81
ensure_bound() (katgpucbf.fgpu.compute.Compute

method), 81

122 Index

katgpucbf, Release 0.1.dev290+gf385556

entropy (katgpucbf.dsim.signal.Random attribute), 77
event_qsize() (katgpucbf.monitor.FileMonitor

method), 106
event_qsize() (katgpucbf.monitor.Monitor method),

107
event_qsize() (katgpucbf.monitor.NullMonitor

method), 107
event_qsize_delta() (katgpucbf.monitor.FileMonitor

method), 106
event_qsize_delta() (katgpucbf.monitor.Monitor

method), 107
event_qsize_delta() (katgpucbf.monitor.NullMonitor

method), 107
event_state() (katgpucbf.monitor.FileMonitor

method), 106
event_state() (katgpucbf.monitor.Monitor method),

107
event_state() (katgpucbf.monitor.NullMonitor

method), 107
events (katgpucbf.queue_item.QueueItem property), 109
EVICTION_MODE (in module katgpucbf.recv), 110

F
FileMonitor (class in katgpucbf.monitor), 106
filter_aggregate() (katg-

pucbf.utils.DeviceStatusSensor method),
113

first_timestamp() (in module katgpucbf.dsim.main),
69

FLAVOUR (in module katgpucbf.spead), 112
format_signals() (in module katgpucbf.dsim.signal),

79
Frame (class in katgpucbf.fgpu.send), 94
Frame (class in katgpucbf.xbgpu.bsend), 99
frequency (katgpucbf.dsim.signal.Periodic attribute),

76

G
gaussian_dtype() (in module katgpucbf.utils), 115
get() (katgpucbf.monitor.Queue method), 108
get() (katgpucbf.ringbuffer.ChunkRingbuffer method),

111
get_baseline_index() (katg-

pucbf.xbgpu.correlation.Correlation static
method), 100

get_free_chunk() (katgpucbf.xbgpu.bsend.BSend
method), 98

get_free_heap() (katgpucbf.xbgpu.xsend.XSend
method), 104

get_nowait() (katgpucbf.monitor.Queue method), 108

H
halt() (katgpucbf.dsim.send.Sender method), 70
halt() (katgpucbf.send.DescriptorSender method), 112

header_size (katgpucbf.xbgpu.bsend.BSend attribute),
98

header_size (katgpucbf.xbgpu.xsend.XSend attribute),
105

Heap (class in katgpucbf.xbgpu.xsend), 103
heap_accumulation_threshold (katg-

pucbf.xbgpu.output.XOutput attribute), 102
heap_bytes (katgpucbf.fgpu.recv.Layout property), 92
heap_bytes (katgpucbf.recv.BaseLayout property), 109
heap_bytes (katgpucbf.xbgpu.recv.Layout property),

102
heap_samples (katgpucbf.fgpu.recv.Layout attribute),

92
heaps_per_fengine_per_chunk (katg-

pucbf.xbgpu.recv.Layout attribute), 102
HeapSet (class in katgpucbf.dsim.send), 70

I
IMMEDIATE_DTYPE (in module katgpucbf.spead), 112
IMMEDIATE_FORMAT (in module katgpucbf.spead), 112
instantiate() (katg-

pucbf.fgpu.compute.ComputeTemplate
method), 82

instantiate() (katgpucbf.fgpu.ddc.DDCTemplate
method), 84

instantiate() (katgpucbf.fgpu.pfb.PFBFIRTemplate
method), 91

instantiate() (katg-
pucbf.fgpu.postproc.PostprocTemplate
method), 92

instantiate() (katg-
pucbf.xbgpu.beamform.BeamformTemplate
method), 97

instantiate() (katg-
pucbf.xbgpu.correlation.CorrelationTemplate
method), 101

internal_channels (katg-
pucbf.fgpu.output.NarrowbandOutput prop-
erty), 87

internal_channels (katgpucbf.fgpu.output.Output
property), 88

internal_channels (katg-
pucbf.fgpu.output.WidebandOutput property),
88

internal_decimation (katg-
pucbf.fgpu.output.NarrowbandOutput prop-
erty), 87

internal_decimation (katgpucbf.fgpu.output.Output
property), 88

internal_decimation (katg-
pucbf.fgpu.output.WidebandOutput property),
88

iter_chunks() (in module katgpucbf.fgpu.recv), 93

Index 123

katgpucbf, Release 0.1.dev290+gf385556

J
join() (katgpucbf.dsim.send.Sender method), 70
jones_per_batch (katgpucbf.fgpu.output.Output

attribute), 88

K
katgpucbf

module, 115
katgpucbf.curand_helpers

module, 105
katgpucbf.dsim

module, 80
katgpucbf.dsim.descriptors

module, 69
katgpucbf.dsim.main

module, 69
katgpucbf.dsim.send

module, 70
katgpucbf.dsim.server

module, 72
katgpucbf.dsim.shared_array

module, 73
katgpucbf.dsim.signal

module, 73
katgpucbf.fgpu

module, 94
katgpucbf.fgpu.compute

module, 80
katgpucbf.fgpu.ddc

module, 83
katgpucbf.fgpu.delay

module, 84
katgpucbf.fgpu.output

module, 87
katgpucbf.fgpu.pfb

module, 89
katgpucbf.fgpu.postproc

module, 91
katgpucbf.fgpu.recv

module, 92
katgpucbf.fgpu.send

module, 93
katgpucbf.fsim

module, 96
katgpucbf.fsim.main

module, 94
katgpucbf.meerkat

module, 106
katgpucbf.monitor

module, 106
katgpucbf.queue_item

module, 108
katgpucbf.recv

module, 109

katgpucbf.ringbuffer
module, 111

katgpucbf.send
module, 112

katgpucbf.spead
module, 112

katgpucbf.utils
module, 113

katgpucbf.xbgpu
module, 105

katgpucbf.xbgpu.beamform
module, 96

katgpucbf.xbgpu.bsend
module, 97

katgpucbf.xbgpu.correlation
module, 100

katgpucbf.xbgpu.output
module, 101

katgpucbf.xbgpu.recv
module, 102

katgpucbf.xbgpu.xsend
module, 103

L
Layout (class in katgpucbf.fgpu.recv), 92
Layout (class in katgpucbf.xbgpu.recv), 102
LinearDelayModel (class in katgpucbf.fgpu.delay), 85
long_name (katgpucbf.meerkat.Band attribute), 106

M
main() (in module katgpucbf.dsim.main), 69
main() (in module katgpucbf.fsim.main), 95
make_descriptor_heap() (in module katg-

pucbf.fgpu.send), 94
make_dither() (in module katgpucbf.dsim.signal), 79
make_heap() (in module katgpucbf.fsim.main), 95
make_heap_payload() (in module katg-

pucbf.fsim.main), 95
make_immediate() (in module katgpucbf.spead), 112
make_queue() (katgpucbf.monitor.Monitor method),

107
make_queue() (katgpucbf.monitor.NullMonitor

method), 108
make_sensors() (in module katgpucbf.xbgpu.recv), 103
make_states() (katg-

pucbf.curand_helpers.RandomStateBuilder
method), 105

make_stream() (in module katgpucbf.dsim.send), 71
make_stream() (in module katgpucbf.fsim.main), 95
make_stream() (in module katgpucbf.recv), 110
make_stream() (in module katgpucbf.xbgpu.bsend), 99
make_stream() (in module katgpucbf.xbgpu.recv), 103
make_stream() (in module katgpucbf.xbgpu.xsend), 105

124 Index

katgpucbf, Release 0.1.dev290+gf385556

make_stream_base() (in module katgpucbf.dsim.send),
71

make_stream_group() (in module katgpucbf.recv), 111
make_streams() (in module katgpucbf.fgpu.send), 94
mask_timestamp (katgpucbf.fgpu.recv.Layout attribute),

92
MIN_COMPUTE_CAPABILITY (in module katg-

pucbf.xbgpu.correlation), 101
MIN_SENSOR_UPDATE_PERIOD (in module katgpucbf),

115
MISSING (in module katgpucbf.xbgpu.correlation), 101
mix_frequency (katg-

pucbf.fgpu.compute.NarrowbandConfig at-
tribute), 83

mix_frequency (katgpucbf.fgpu.ddc.DDC property), 83
module

katgpucbf, 115
katgpucbf.curand_helpers, 105
katgpucbf.dsim, 80
katgpucbf.dsim.descriptors, 69
katgpucbf.dsim.main, 69
katgpucbf.dsim.send, 70
katgpucbf.dsim.server, 72
katgpucbf.dsim.shared_array, 73
katgpucbf.dsim.signal, 73
katgpucbf.fgpu, 94
katgpucbf.fgpu.compute, 80
katgpucbf.fgpu.ddc, 83
katgpucbf.fgpu.delay, 84
katgpucbf.fgpu.output, 87
katgpucbf.fgpu.pfb, 89
katgpucbf.fgpu.postproc, 91
katgpucbf.fgpu.recv, 92
katgpucbf.fgpu.send, 93
katgpucbf.fsim, 96
katgpucbf.fsim.main, 94
katgpucbf.meerkat, 106
katgpucbf.monitor, 106
katgpucbf.queue_item, 108
katgpucbf.recv, 109
katgpucbf.ringbuffer, 111
katgpucbf.send, 112
katgpucbf.spead, 112
katgpucbf.utils, 113
katgpucbf.xbgpu, 105
katgpucbf.xbgpu.beamform, 96
katgpucbf.xbgpu.bsend, 97
katgpucbf.xbgpu.correlation, 100
katgpucbf.xbgpu.output, 101
katgpucbf.xbgpu.recv, 102
katgpucbf.xbgpu.xsend, 103

Monitor (class in katgpucbf.monitor), 106
MultiDelayModel (class in katgpucbf.fgpu.delay), 86

N
n_ants (katgpucbf.xbgpu.recv.Layout attribute), 102
n_channels_per_substream (katg-

pucbf.xbgpu.recv.Layout attribute), 102
n_spectra_per_heap (katgpucbf.xbgpu.recv.Layout at-

tribute), 103
name (katgpucbf.fgpu.output.Output attribute), 88
name (katgpucbf.xbgpu.output.Output attribute), 102
NarrowbandConfig (class in katgpucbf.fgpu.compute),

82
NarrowbandOutput (class in katgpucbf.fgpu.output), 87
Nodither (class in katgpucbf.dsim.signal), 76
NonMonotonicQueryWarning, 87
NullMonitor (class in katgpucbf.monitor), 107

O
on_stop() (katgpucbf.dsim.server.DeviceServer

method), 72
op_name (katgpucbf.dsim.signal.CombinedSignal at-

tribute), 74
Output (class in katgpucbf.fgpu.output), 88
Output (class in katgpucbf.xbgpu.output), 102

P
packbits() (in module katgpucbf.dsim.signal), 79
parameters() (katgpucbf.fgpu.compute.Compute

method), 81
parse_args() (in module katgpucbf.dsim.main), 69
parse_args() (in module katgpucbf.fsim.main), 95
parse_signals() (in module katgpucbf.dsim.signal),

79
parse_source() (in module katgpucbf.utils), 115
Periodic (class in katgpucbf.dsim.signal), 76
PFBFIR (class in katgpucbf.fgpu.pfb), 89
PFBFIRTemplate (class in katgpucbf.fgpu.pfb), 90
pol (katgpucbf.xbgpu.output.BOutput attribute), 101
Postproc (class in katgpucbf.fgpu.postproc), 91
PostprocTemplate (class in katgpucbf.fgpu.postproc),

91
PREAMBLE_SIZE (in module katgpucbf.fgpu.send), 94
present (katgpucbf.fgpu.send.Chunk attribute), 93
present_ants (katgpucbf.xbgpu.bsend.Chunk prop-

erty), 99
put() (katgpucbf.monitor.Queue method), 108
put_nowait() (katgpucbf.monitor.Queue method), 108
Python Enhancement Proposals

PEP 257, 48
PEP 484, 48
PEP 526, 48
PEP 8, 48

Q
quantise() (in module katgpucbf.dsim.signal), 79

Index 125

katgpucbf, Release 0.1.dev290+gf385556

Queue (class in katgpucbf.monitor), 108
QUEUE_DEPTH (in module katgpucbf.fsim.main), 94
QueueItem (class in katgpucbf.queue_item), 108

R
Random (class in katgpucbf.dsim.signal), 77
RandomStateBuilder (class in katg-

pucbf.curand_helpers), 105
range() (katgpucbf.fgpu.delay.AbstractDelayModel

method), 84
range() (katgpucbf.fgpu.delay.AlignedDelayModel

method), 85
range() (katgpucbf.fgpu.delay.LinearDelayModel

method), 86
range() (katgpucbf.fgpu.delay.MultiDelayModel

method), 86
recv_chunks() (in module katgpucbf.xbgpu.recv), 103
recycle() (katgpucbf.fgpu.recv.Chunk method), 92
recycle() (katgpucbf.recv.Chunk method), 109
reduce() (katgpucbf.xbgpu.correlation.Correlation

method), 100
request_signals() (katg-

pucbf.dsim.server.DeviceServer method),
72

request_time() (katgpucbf.dsim.server.DeviceServer
method), 72

required_bytes() (katgpucbf.fgpu.compute.Compute
method), 81

reset() (katgpucbf.queue_item.QueueItem method),
109

run() (katgpucbf.dsim.send.Sender method), 70
run() (katgpucbf.fsim.main.Sender method), 95
run() (katgpucbf.send.DescriptorSender method), 112
run_backend() (katgpucbf.fgpu.compute.Compute

method), 81
run_ddc() (katgpucbf.fgpu.compute.Compute method),

81
run_narrowband_frontend() (katg-

pucbf.fgpu.compute.Compute method), 82
run_wideband_frontend() (katg-

pucbf.fgpu.compute.Compute method), 82
RX_SENSOR_TIMEOUT_CHUNKS (in module katg-

pucbf.recv), 110
RX_SENSOR_TIMEOUT_MIN (in module katgpucbf.recv),

110

S
sample() (in module katgpucbf.dsim.signal), 79
sample() (katgpucbf.dsim.signal.CombinedSignal

method), 74
sample() (katgpucbf.dsim.signal.Constant method), 75
sample() (katgpucbf.dsim.signal.Delay method), 75
sample() (katgpucbf.dsim.signal.Nodither method), 76
sample() (katgpucbf.dsim.signal.Periodic method), 76

sample() (katgpucbf.dsim.signal.Random method), 77
sample() (katgpucbf.dsim.signal.Signal method), 77
sample() (katgpucbf.dsim.signal.SignalService

method), 78
sample_bits (katgpucbf.fgpu.recv.Layout attribute), 93
sample_bits (katgpucbf.xbgpu.recv.Layout attribute),

103
saturation_counts() (in module katg-

pucbf.dsim.signal), 80
send() (katgpucbf.fgpu.send.Chunk method), 93
send() (katgpucbf.xbgpu.bsend.Chunk method), 99
send_chunk() (katgpucbf.xbgpu.bsend.BSend method),

98
send_heap() (katgpucbf.xbgpu.xsend.XSend method),

105
send_stop_heap() (katgpucbf.xbgpu.bsend.BSend

method), 98
send_stop_heap() (katgpucbf.xbgpu.xsend.XSend

method), 105
Sender (class in katgpucbf.dsim.send), 70
Sender (class in katgpucbf.fsim.main), 95
set_heaps() (katgpucbf.dsim.send.Sender method), 70
set_signals() (katgpucbf.dsim.server.DeviceServer

method), 72
SharedArray (class in katgpucbf.dsim.shared_array), 73
Signal (class in katgpucbf.dsim.signal), 77
signal (katgpucbf.dsim.signal.Delay attribute), 76
signal (katgpucbf.dsim.signal.Nodither attribute), 76
SignalService (class in katgpucbf.dsim.signal), 78
sink (katgpucbf.fgpu.recv.Chunk attribute), 92
sink (katgpucbf.recv.Chunk attribute), 110
skip() (katgpucbf.fgpu.delay.AbstractDelayModel

method), 85
skip() (katgpucbf.fgpu.delay.AlignedDelayModel

method), 85
skip() (katgpucbf.fgpu.delay.LinearDelayModel

method), 86
skip() (katgpucbf.fgpu.delay.MultiDelayModel

method), 87
spectra_per_heap (katgpucbf.fgpu.output.Output

property), 88
spectra_samples (katg-

pucbf.fgpu.output.NarrowbandOutput prop-
erty), 87

spectra_samples (katgpucbf.fgpu.output.Output prop-
erty), 88

spectra_samples (katg-
pucbf.fgpu.output.WidebandOutput property),
88

StatsCollector (class in katgpucbf.recv), 110
std (katgpucbf.dsim.signal.WGN attribute), 78
steady_state_timestamp_sensor() (in module katg-

pucbf.utils), 115
stop() (katgpucbf.dsim.send.Sender method), 71

126 Index

katgpucbf, Release 0.1.dev290+gf385556

stop() (katgpucbf.dsim.signal.SignalService method),
78

subsampling (katgpucbf.fgpu.output.NarrowbandOutput
property), 87

subsampling (katgpucbf.fgpu.output.Output property),
88

subsampling (katgpucbf.fgpu.output.WidebandOutput
property), 89

T
taps (katgpucbf.fgpu.output.Output attribute), 88
terminal (katgpucbf.dsim.signal.Nodither property), 76
terminal (katgpucbf.dsim.signal.Signal property), 78
TerminalError, 78
time() (katgpucbf.monitor.Monitor method), 107
TimeConverter (class in katgpucbf.utils), 114
TimeoutSensorStatusObserver (class in katg-

pucbf.utils), 114
timestamp (katgpucbf.fgpu.recv.Chunk attribute), 92
timestamp (katgpucbf.fgpu.send.Chunk property), 94
timestamp (katgpucbf.queue_item.QueueItem attribute),

109
timestamp (katgpucbf.recv.Chunk attribute), 110
timestamp (katgpucbf.xbgpu.bsend.Chunk property), 99
timestamp (katgpucbf.xbgpu.xsend.Heap property), 103
timestamp_mask (katgpucbf.fgpu.recv.Layout property),

93
timestamp_step (katgpucbf.xbgpu.recv.Layout at-

tribute), 103

U
unix_to_adc() (katgpucbf.utils.TimeConverter

method), 114
unroll_align() (katgpucbf.fgpu.ddc.DDCTemplate

static method), 84
update() (katgpucbf.recv.StatsCollector method), 110
update_aggregate() (katg-

pucbf.utils.DeviceStatusSensor method),
113

V
value (katgpucbf.dsim.signal.Constant attribute), 75
VERSION (katgpucbf.dsim.server.DeviceServer attribute),

72

W
w_cutoff (katgpucbf.fgpu.output.Output attribute), 88
weight_pass (katgpucbf.fgpu.output.NarrowbandOutput

attribute), 87
weights (katgpucbf.fgpu.compute.NarrowbandConfig

attribute), 83
WGN (class in katgpucbf.dsim.signal), 78
WidebandOutput (class in katgpucbf.fgpu.output), 88

window (katgpucbf.fgpu.output.NarrowbandOutput prop-
erty), 88

window (katgpucbf.fgpu.output.Output property), 88
window (katgpucbf.fgpu.output.WidebandOutput prop-

erty), 89
with_state() (katgpucbf.monitor.Monitor method),

107
wrap_angle() (in module katgpucbf.fgpu.delay), 87

X
XOutput (class in katgpucbf.xbgpu.output), 102
XSend (class in katgpucbf.xbgpu.xsend), 104

Z
zero_visibilities() (katg-

pucbf.xbgpu.correlation.Correlation method),
100

Index 127

	Introduction
	MeerKAT and MeerKAT Extension
	Radio Astronomy Correlators
	This module
	Controller

	Mathematical background
	Frequencies
	Complex voltages
	Polyphase filter bank
	Correlation products
	Narrowband
	Delay and phase compensation

	Changelog
	System requirements
	Networking
	BIOS settings

	Installation
	Installation with Docker
	Installation with pip

	Operation
	katsdpcontroller
	Starting the correlator
	End-to-end correlator startup
	Individual engine startup
	Pinning thread affinities
	Testing without a high-speed data network

	Controlling the correlator
	dsim
	fgpu
	xbgpu

	Shutting down the correlator
	End-to-end correlator shutdown
	Individual engine shutdown

	Monitoring
	katcp sensors
	Prometheus metrics
	Event monitoring

	Data Interfaces
	SPEAD Protocol
	Packet Format
	F-Engine Data Format
	Input
	Output Packet Format

	X-Engine Data Format
	Input
	Output Packet Format

	DSP Engine Design
	Terminology
	Glossary
	Operation
	Chunking
	Queues
	Transfers and events

	Common features
	Shutdown procedures

	F-Engine Design
	Network receive
	GPU Processing
	Decode
	Polyphase Filter Bank
	FFT
	Real-to-complex transform
	Unzipping the FFT

	Postprocessing
	Coarse delays
	Digitiser sample statistics

	Network transmit
	PeerDirect
	Output Heap Payload Composition

	Missing data handling
	Narrowband
	Down-conversion kernel
	Mixer signal

	Filter design
	Delays
	Multiple outputs
	Input statistics

	XB-engine design
	Correlation
	Implementation details of correlation kernel
	Complex multiplications
	Parameters and constants
	Thread indexing
	Data loading
	Asynchronous loading

	Result storage

	Accumulations, Dumps and Output Data
	Output Heap Payload Composition

	Missing Data Handling

	Beamforming
	GPU kernel
	Higher beam counts
	Dithering

	Development Environment
	Setting up a development environment
	Pre-commit
	Configuration Files
	Installation Prerequisites

	Light-weight installation
	Boiler-plate files
	Preparing to raise a Pull Request
	Pre-commit compliance
	Module documentation updates

	Unit Testing
	Digitiser Packet Simulator
	Usage
	Signal specification
	Basics
	Operators
	Variables
	Dithering

	Design
	Signal generation
	Transmission

	F-Engine Packet Simulator
	Qualification framework
	Requirements
	Configuration
	Running
	Post-processing

	Updating autotuning database
	Benchmarking
	Multicast groups
	Algorithm

	TODOs
	katgpucbf package
	Subpackages
	katgpucbf.dsim package
	Submodules
	katgpucbf.dsim.descriptors module
	katgpucbf.dsim.main module
	katgpucbf.dsim.send module
	katgpucbf.dsim.server module
	katgpucbf.dsim.shared_array module
	katgpucbf.dsim.signal module

	Module contents

	katgpucbf.fgpu package
	Submodules
	katgpucbf.fgpu.compute module
	katgpucbf.fgpu.ddc module
	katgpucbf.fgpu.delay module
	katgpucbf.fgpu.engine module
	katgpucbf.fgpu.main module
	katgpucbf.fgpu.output module
	katgpucbf.fgpu.pfb module
	katgpucbf.fgpu.postproc module
	katgpucbf.fgpu.recv module
	katgpucbf.fgpu.send module

	Module contents

	katgpucbf.fsim package
	Submodules
	katgpucbf.fsim.main module

	Module contents

	katgpucbf.xbgpu package
	Submodules
	katgpucbf.xbgpu.beamform module
	katgpucbf.xbgpu.bsend module
	katgpucbf.xbgpu.correlation module
	katgpucbf.xbgpu.engine module
	katgpucbf.xbgpu.main module
	katgpucbf.xbgpu.output module
	katgpucbf.xbgpu.recv module
	katgpucbf.xbgpu.xsend module

	Module contents

	Submodules
	katgpucbf.curand_helpers module
	katgpucbf.mapped_array module
	katgpucbf.meerkat module
	katgpucbf.monitor module
	katgpucbf.queue_item module
	katgpucbf.recv module
	katgpucbf.ringbuffer module
	katgpucbf.send module
	katgpucbf.spead module
	katgpucbf.utils module

	Module contents

	Bibliography
	Python Module Index
	Index

